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Preface

The problem set of the book covers all basic topics of a course on Integra-
tion. It can be used to practice for exams, to facilitate the completion of
homework assignments, and to review course material. Interactive variants
to model problems with detailed solutions permit the student reader to test
his comprehension of the relevant techniques. In addition to the collection
of problems, a small mathematics lexicon contains brief descriptions of the
relevant theorems, methods, and definitions.

There exists also a sportive aspect of mathematics - challenging problems
requiring ideas beyond the standard techniques. The problems in the chapter
Calculus Highlights are perhaps too difficult for undergraduates. They are
included to initiate or strengthen fascination for mathematics. It is definitely
not a mistake to practice substantially harder than necessary ...!

The book is partially translated from
Aufgaben und Losungen zur Hoheren Mathematik 1

by Jorg Horner and the author. It supplements this textbook by providing
detailed solutions to tests for the chapters on Integration. Moreover, the book
includes additional problems, in particular problem variants for the topics of
the tests.

The author wishes the readers success in their studies and hopes that math-
ematics will become one of their favorite subjects!

Klaus Hollig


https://link.springer.com/book/10.1007/978-3-662-66902-0
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Introduction

The book contains problems with detailed solutions, problem variants with
interactive result verification, and a mathematics lexicon for the principal
topics which are usually subject of a course on Integration:

e Elementary Integrals

e Rational Integrands

Integration by Parts

Substitution

Solids of Revolution

Improper Integrals

The problem set can be used to practice for exams, to facilitate the comple-
tion of homework assignments, and to deepen the comprehension of course
material. How is this accomplished most effectively? Remembering his own
student days, the author makes the following recommendations to a student
reader.

Consider, as an example, a problem from the chapter on Integration by Parts:

3.3 Integrals of Products of Polynomials with
Exponentials

Compute
1 2
a) / re’dx b) / (22 +1)%e* dx
0 1
Resources: Integration by Parts, Table of Elementary Integrals

Before looking at the solution of the problem, review the relevant theory
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or methods (resources). Clicking on the links leads to the following brief
descriptions of the relevant formulas from the Lezicon in chapter 7.

Integration by Parts

[ro=ts- [ 14 /abf’gz[fg]’;—/abfg’

[fg]? = 0, if fg vanishes at a and b, or, if the product is periodic with period
(b—a).

Typical Applications

o g(x) = 2%, f(z) = e® cosz, sinz ~»  successive reduction of the

polynomial degree

e g(x) = "z, f(z) = 2* ~  elimination of the logarithm after
repeated integration by parts

Table of Elementary Integrals

1
A1 = 1 -
f(z) || 2™ n # » exp x nx o
anrl
F(z) In |z| exp x xlnz —x | arctan x
n+1
f(z) CoS T sin x tan x cosh sinh
F(z) sin x —cosx | —In(cosz) | sinhz cosh x

Try to solve the problem with these instructions. Then compare your com-
putations with the solution given in the book:

Solution

For a product of a function g with a polynomial f, integrating by parts,

/ab fg' = 1fal - /ab g, (1)

reduces the degree (f — f’) and thus simplifies the integral, provided that
a simple antiderivative of ¢’ (¢ — g) exists.



a) fol re® dx
noting that the exponential function does not change when differentiated or
integrated, applying (1) with f(z) =z, ¢'(z) =e* ~

1 z=1 1
/ z e dx = [ x ex] —/ 1 ¥ dx
0 \f,./v \f,./v =0 0 \f,./v
g’ g ! g

= (-0 - =e—(e—1)=1

b) fol(Qm +1)%e** dx

noting that

d 1
au(mﬁ +q) = pu'(px + q), /U(px +q)dz = ];U(p:v +q)

with U(y) an antiderivative of u(y), applying (1)  ~

1
s = /(2x+1)2 e* dx
0 T~V g
= \[(2x+1)262$/2)}i_9—/0 2-2(2z +1)e*/2dx
X A >y

B
e A=3%e%/2-1/2=9¢"/2-1/2
e B is computed by integrating by parts a second time:
B = /1 22z + 1) e** dz = [2(2x + 1)621/2]22(1) — /14e2w/2d:€
0 0

= 36— 1-[e®]._ =3¢’ —1— e*+1=2¢

combining the results ~-

s=A—-B=9e*/2—-1/2—-2e*>=5e*/2 —1/2 ~ 17.9726

Remark
Noting that a* = e integration by parts applies to integrands which are

products of a” with polynomials p(z) as well.
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The solutions are written in a keyword-like style, as you would employ when
you comment your solutions in an exam or for homework problems. For
example, the phrase

2

“multiplying with z =~

stands for “By multiplying with x we obtain”. Other examples of typical
phrases are “simplifying ~-» ...” or “alternative argument: ...”. There is
just as much detail included as is necessary for the mathematical arguments.

To gain more practice with the solution technique, it is highly recommended
to solve some (preferably all ...) of the problem variants following the prin-
cipal model problem for each topic. For Integrals of Products of Polynomials
with Fxponentials the variants are:

Problem Variants

B a) fol(l +x)e *dx, D) ffl r?e” dx

H a) fOQxe_z‘” dz, b) f_ll(l +z)2e "dx

You can check your solution by typing your answer in the field adjacent to
the - box, replacing every question mark by a character (digit or
letter). Convert your result to a decimal, truncated to the number of digits
indicated. For example,

2/3 — 0.6666... —5 0.66,  answer : |066 .



VAN Note that the period is omitted; only the characters corresponding to
the question marks are typed.

The solutions for the three problem variants are

(1) a) 2 —3/e ~ 0.8963, b) 2 — 5/e ~ 0.1606
(2) a) (1 —5/e')/4 ~ 0.2271, b) 2e — 10/e ~ 1.7577

(3) a) —=2/(In3)* +7/In3 ~ 4.7146, b) 16/In2 — 16/(In 2)* + 6/(In2)* ~
7.7979

Hence, the correct input is

(1) a)2.22b)2.22 — [089016
(2) a) 227 b) 222 —  [022175
(3) a) 277 b)2.22  —  [471779

As mentioned in the beginning, the problem set can also assist you in com-
pleting homework assignments. Just look for a similar problem and study
its solution. Similarly, for methods and examples presented in class, practice
with the relevant problems.

The above remarks pertain to the first six chapters, which exclusively discuss
the solution of standard problems. Usually, such problems constitute the ma-
jor portion of an exam or homework assignment. Hence, to review the basic
techniques involved is of primary importance. Applying these techniques to
more advanced problems is a natural next step. The chapter Calculus High-
lights contains examples of rather challenging applications. You do not have
to be disappointed if you cannot solve any of these problems; they are defi-
nitely very difficult. It is legitimate to immediately look at the solutions and
learn how the methods from the previous chapters are applied in an advanced
setting. Also, as mentioned in the Preface, it is not a mistake to practice
substantially harder than necessary .. .!

You have solved some of the problems in chapter 7 without resorting to the
solutions. Then ...

... you can take pride in your mastery of the principal techniques
for solving problems concerning Integration!
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With the previous explanations aimed at student readers, instructors could
(obviously) also benefit from the interactive problem collection. The solu-
tions of the model problems can be used as examples in class, and some of
the variants assigned as homework problems. Students will welcome the pos-
sibility of checking results before submitting or presenting their solutions in
the exercise sections.

Have all integration methods been described? No: Two BEAUTIFUL
techniques, Fourier Transforms and the Residue Theorem, are miss-
ing!

Two examples,

[ 0o 3
/ Slmxe_:‘”dyczz, / Ve dx:l,
0 T 0 56'2+1 \/g

provide an incentive to look at Problems and Solutions for Fourier Analysis
and Problems and Solutions for Complex Analysis.

W

Disclaimer: Although the solutions and answers to the variants have been
thoroughly checked, mistakes can always occur!. Please, write to the author
(Klaus.Hoellig@gmail.com) if you find any errors.

'A statement by a teaching assistant to encourage students, which the author will
always remember: “This year, the final exam is not too difficult - your professor could
check the results without committing any errors!”.

11



Chapter 1

Elementary Integrals
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1.1 Integration of a Polynomial

Determine an antiderivative of
f(z) = bz +22°

and compute f:ll f.

Resources: Table of Elementary Integrals, Properties of the Integral,
Fundamental Theorem of Calculus

Problem Variants

B f(z)=3—42?

13



Solution

Indefinite integral

linearity of the integral —

/51:—1—2:1:3 dxz5/mdx+2/x3dx
—_————

f(=)

1
applying the formula / 2 dr = ?xnﬂ + C for an antiderivative of a
n

monomial  ~»

/f(x)dx:5(%x2)+2(%x4>+C=W+C:: F(x)

with C' € R an arbitrary integration constant

Definite integral

fundamental theorem of calculus,

/ f = [FIt = F(b) - F(a),

with F' an antiderivative of f (F' = f) —

4 2 47a=4
5 5.16+256 5+ 1
/ 5q + 223 dr = {x—”] - +0 0F 1 6
. 2 2 2

r=—1

14



1.2 Integration of a Polynomial Expression

Determine an antiderivative of
flz) = (3 —2)*,

and compute fol f.

Resources: Table of Elementary Integrals, Properties of the Integral,
Fundamental Theorem of Calculus

Problem Variants

B f(z)=(z/4-4)

4
f74f = =777
check

B f(z)=(2—4x)

fol f=r
check

B f(r)=(1-2x)

[Zf=-m
check

15



Solution

Indefinite integral

/MW%@Mx=?Mn+®+Q G'(y) = g(y),

in view of the chain rule

application to f(z) = (3z — 2)4, ie., with p = 3, ¢ = =2, g(y) = y* ~

antiderivative

11 1
F(z) :/(3:1:—2)4dx: 3 ggf’ +C' = 1—5(337—2)5—1-0
<~
! G)

Definite integral

fundamental theorem of calculus,

b
| r=rt=F) - Pl
with F' an antiderivative of f —

=l 1 11

/01(3x —2)tdr = [1—15(3x — 2)5L:0 — —(3-2P - —(0-2)°= =

Remark

The alternative solution method, expanding the power and integrating the
resulting linear combination of monomials, is tedious, and obviously not rec-
ommended.

16



1.3 Integral of a Linear Combination of Powers

C t /32_9601
ompute T .
P 0\/l’+1

Resources: Table of Elementary Integrals, Properties of the Integral,
Fundamental Theorem of Calculus

Problem Variants

9
24 x

[ ] dx
/2 vVao—1

.77
check
1 2
Ay —
I/ T dx
o VT
.77
check

17



Solution

9 _
simplification of the integrand f(x) = < by expanding the numerator
+1
Vv
in powers of (z + 1):
2—r=—(z+1)+3 ~
1 3
f(z) = vt =—(z+ 1Y+ 3(x+1)"?

Vol Vol
applying the formula
_ s+1
/(x—xg)sdx:%—i—C, s# —1,

for an antiderivative of a power ~»  antiderivative of f,

2
Fz) = —3(1+ 2?4 6(1+ )+ C,

and
3 2 2

| aa - [F(x)]iiéz(—§43/2+6-41/2 —(_513/2%.11/2)
0

18



1.4 Integral of the Logarithm of a Polynomial
Compute /6 In(z? + 2z — 3)dx .

Resources: Fundamental Theorem of Calculus, Table of Elementary
Integrals

Problem Variants

[ | f; In(z® — 2?) dx

check

check
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Solution

For a polynomial p with real zeros xy, an antiderivative F' of f(x) = Inp(z)
can be determined by factoring p,
p(z) =clex —x1)(x —x9) -+ -,
rewriting f(x) as
f(z) =Inc+1In(x —z1) + In(z —x9) + - -+,

and applying the formula [Intdt = ¢(Int — 1) + C. A definite integral is

b
o

computed with the fundamental theorem of calculus: fab f=1F]
Application to [, In(z? + 2z — 3) da:
pplication to [, In(z? 4+ 2z — 3) dx
p(z)
Factorization
formula for the solutions of the quadratic equation 22 + 22 -3 =0 =

—2+4/22—-4-1-(-3) -244
T2 = = >

2 2

ie.,r; = -3, xo=1, and

p(r) = (z = 1)(z +3)

Antiderivative

In(ab) =lna+Inb ~~
f(z) =Inp(x) =In(z — 1) + In(z + 3)
JIntdt =t(lnt—1)+C ~~
Fz)=(@—-1(n(z-1)-1)+ (z+3)(In(z+3)-1)+C

Integral

/2 f=F = [(z—D(n(z—1) = 1) + (2 + 3)(n(z + 3) — D=8
= 5(In5—1)+9(In9—1)—1(In1—1) — 5(In5— 1)
= 18In3 -8~ 11.7750

20



1.5 Integration of an Exponential

Determine an antiderivative of
f(l‘) — 23az+4
and compute fol f.

Resources: Table of Elementary Integrals

Problem Variants

142z
[} f0342

check
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Solution

simplification of the integrand:
f(ﬂ?) _ 24+3x — 24 X 23$ —16-8% = 1681n8x

determination of an antiderivative F"
e dr = —e® (in general, replacing x by axr ~» factor 1/a in the
a
antiderivative) ——
16 16
F — de = — In8zx _ —- ]
(z) /f(l‘) * In8 ¢ In8

integral over [0, 1]:

! 16 1" 16 16
= |—8" = .8 - —.1
/0 / [ln8 } In8 In8

=0
16 112
= g [T 3o 70380
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1.6 Antiderivative of a Trigonometric Polyno-
mial

Determine an antiderivative of

f(z) = cos(2z) sin(5z) dx .

Resources: Table of Elementary Integrals, Properties of the Integral

Problem Variants

B f(z) =sin(27)sin’ 2

(7—="7cos(?x)+77?(?x))/16:
check

B f(x)=sin(2z) cos(2z)

—(747277(7x))/8:
check

B f(z) = cos(2z) cos(3x)

(7777 (x)+777(72)) /10:
check
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Solution
applying the trigonometric identity
2sin acos f = sin(a + f) + sin(a — )

to f(x) = cos(2x)sin(bz) with a = bz, f =2z~

flz) = %sin(?a:) + % sin(3x)

integrating, noting that [sinzdz = —cosz as well as [ h(sz)dz = L1H(sz)
with H an antiderivative of h ~ ~~

1 1
F(x) = 1 cos(7x) — 6 cos(3z) + C

Alternative Solution with Complex Analysis

application of the beautiful formula of Euler-Moivre:

it —it

it o e t+e . e e
e’ = cost+1sint <= cost = ————sint = ————
1) (2) 2 (3) 2i
rewriting f(x) = cos(2z)sin(5z), using (2) and (3) ~
f( ) eZix + 672190 651:1: _ ef5iz e7i:1: + eSix . efBix - e?iz
xTr) = =
2 2i 4i

combining the first and the last, as well as the seond and the third exponen-
tial, using (3) ~

) = % (sin(7z) + sin(3z))

Remark

In this fashion, every product of sines and cosines can be converted to a lin-
ear combination of exponentials e?**, or, alternatively, to a linear combination
of sin(kx) and cos(kx). For example,

elOi:v + 2e4ix _ eQiz + e—Qi:zt _ 26—4i:c _ e—lOi:c
81

1 1 1
= 1 sin(10zx) + 5 sin(4z) — 1 sin(2x)

cos?(3z) sin(4z) =

24



1.7 Integral of a Trigonometric Polynomial
Compute /7r (cosz — 3sinx)* dx.

Resources: Table of Elementary Integrals, Properties of the Integral,
Fundamental Theorem of Calculus

Problem Variants

[ | /7r (sin(2z) — cos z)* dx

—T

?:
check

| /7r (cos(3x) + sin(3z))* dw

—T

7
check

[ | /7r (2 cos(z) — cos(37))? dw

—T

7
check
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Solution
applying the binomial formula,
- 4
(a—0)*=> (-1 (k> a* ok = a* 4 4a3b + 6a*b? + 4ab® + b*,
k=0

to the integrand f(z) = (cosx — 3sinz)? ~
s = / f= / C* —12C3S + 54C?5% — 108C'S3 + 815* dx

with C' = cosx, S =sinx

The second and fourth term are odd functions (f(—z) = —f(z)). Hence,
their integral over the symmetric interval [—m, 7] vanishes.

rewriting the remaining terms, using

1
C*=0C%1-5%), S*=85*(1-C%, CS= 3 sin(2z)

T 1 54 81
s = / Cc? — ) sin?(27) + T sin?(2z) 4 8152 — T sin?(2z) da

—Tr

[T _cos?(kx)dx = [T sin*(kz)dz =7 =

1 54 81
S_W(1_1+Z+81_Z> = 75m ~ 235.6194

Alternative Solution with Complex Analysis

application of the beautiful formulas of Euler-Moivre:

oit 4 ot oit _ it
cost = ——, sint = ———
2 21

The conversion to a linear combination p(z) = >7__ e simplifies the

computation of a definite integral over an interval of length 27 tremendously.

Since, for k # 0,

=1

—~
a+2m ikg 7 T=a+27 ika .ik(2) ika
ik e e e e
e dr = | = = — =0,
a

ik ik

r=a

26



only the summand ce® = ¢y contributes: faa”ﬂ p = 2mcy.

For f(x) = (cosx—3sinx)*, Euler’s formulas and the binomial theorem yield

R A 1\* N\ iz N e—iz)
fla) = ( S )Z(Z) (=3 +3)+ (3 +De7)

1 4 . .
E Z (k) (_3 + i)4—ke(4—k)lx(3 + i)ke—kl.r .

4
k=0

The coeffient ¢y of the trivial exponential e’ = 1 corresponds to k = 2.
Hence,

/:f(x) dz = 2mcy = 2#1—16<;L>

(=3+1)’(3+1)%) = Tom.
(

NV
-1

0)2

27



1.8 Antiderivatives of Expressions with Square
Roots

Compute

a) /@H)ﬂdx b)/ﬁdx c)/mdx

Resources: Table of Elementary Integrals

Problem Variants

N /Wi—x_ﬁdx

2?4 (=7422) (2 + 2)Y? )3+ C:
check

n /(Qx — D)2z +1D)Y3dz

?(?2="7)(2x + 1)¥3/28 + C:
check

/3_xdx
2—+V4d+zx

—?(4+ )27z + C:
check
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Solution

The expressions are rewritten so that the elementary antiderivatives

1
| — n+1 -1
/a: x n+1x +C,n#
2
+2)"?dz = + + o)"/2+1
/(a x)"* dw n+2(a x) +C

can be used.
a) /(1 +2)V1—ade

14+2)=—1—-2)+2 ~

2 4
/—(1 21— ) e = 21— ) - (1 - 2) 4 C

2
=7 (7T+32)(1—2)’?+C

x
b —d
) / 1+v1—-2 v
expanding the fraction with 1—+/1 — z and using the third binomial formula,
(a+b)(a—0b)=a*—b ~

[REE D [1-visar—as Samap s

1
—d
/m_ﬁ '
expanding with 1+ x + /z =~

/ ”11?1\? —%((14—35)3/2—1—:63/2)—1—0
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1.9 Integrals of Roots of Linear Functions

Compute
° 3 d b) 6 dz
a V3r —1dx —_—
) /o /2 vidr +1
Resources: Fundamental Theorem of Calculus, Table of Elementary
Integrals

Problem Variants

3
1

[ | V3r—5+ ———d

/2 ¢ V3xr — 5 *

check

5
[ | / vV2xr — 2dx
1

?:
check
- 6 dx
1 \4/ 3r — 2
.77
check
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Solution

application of the formula for the antiderivative of a (fractional) power of a
linear function:

1
F(x) = b)" dz = byt 4+ C
(@)= [ (b dr = ——slar+ by +
I (@)
forr# —1 and a,b € R, a #0
a)f(:zc)zii%x—l,fosf
r=1/3,a=3,b=—-1 ~» antiderivative

Fla) (Br— )3 40 = }1(3;1; _ 1By

T 3(1/3+1)

fundamental theorem of calculus ~»

3 1 1
/ 3z —1dex = F(3) — F(0) = Z84/3 - 1(—1)4/3 =4+- ="
0 v
f()

b) flz) =1/Vaz + 1, [} f

To apply the general formula, f(z) is rewritten as

flz) = (4o +1)12,

ie,r=-1/2,a=4,b=1, and
1

fundamental theorem of calculus ~»

=1

[\CR V]

/;f(x)dx:F((S)—F(Q):%m—% 8+1:g—
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1.10 Area Bounded by the Graph of a Polyno-
mial and the x-Axis

Compute the shaded area for the poly-
nomial /
>

/ \J

plr) =23 —22% —x +2.

Resources: Fundamental Theorem of Calculus, Table of Elementary
Integrals

Problem Variants

u p(z) = 22> — 5w + 2

?.977:
check

" =’ - /\
plz)=2"—Tx+6 /o

77.77:
check
u p(x) = z* — 323 + 222
X
7.7
check
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Solution

First, the zeros x; of the polynomial p are determined. Then, the subareas
Ap =

f;e p‘ between adjacent zeros are computed.
k

Zeros

An apparent zero of
p(r) =2° —22° — 2 +2
is To = 1.
dividing by the corresponding linear factor xt — 1  ~»

(2% =222 -2 +2 ) : (z—1) = 2*—2-2
3 —x?
—2? -z
—2? 4z
—2r +2
—2x +2
0

formula for the solutions of the quadratic equation 2> —2 —2 = 0~
remaining zeros

ht¢@4ﬁ—4q.¢4):113

2 2
e, xr1=—1,29 =2
Area
antiderivative of p: P(z) = %4 — %ﬁ - %2 +2z+C
subareas:
e left part:

1
Alz‘/]?
1

e right part:

1 2 1 1 2 1 8
=P =(--=-= 2)—(=4+—-=—-2) ==
1PL (4 3 2+'> (4+3 2 ) 3

33



VAN Taking absolute values is necessary, since for areas below the z-axis f;j f
is negative.
8 5 37

total area: Ay + Ay = 3 + o= 1

34



1.11 Area Between Two Functions

Compute the area of the region bounded by the graphs of the functions
f(z) =4 — 2 and g(z) = 3/x.

Resources: Table of Elementary Integrals

Problem Variants

B fz)=—a’+2—4,9(x)=1-2x

check

B f(2) =3V7, gla) =242

7.7
check

B f(z)=-2+52+3,g(x)=2>+3x—1

?:
check
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Solution

Description of the region

intersection of the graphs of f(z) =4 — x and g(z) = 3/:
equating f and g,

4—z=3/r < 2 —4r+3=0,

and applying the formula for a quadratic equation  ~-

4+ V1612

T4+ 9

i.e., the intersections P_ = (1,3) and Py = (3,1)

Area

Since f(z) > g(x) for 1 < x < 3, the area S equals flsf — g (area under f
minus area under g), i.e.,

3 2 =3
S = /1(4—x)—§dx—{4x—%—3lnx]

r=1

= (12—2—31113) — (4—%—0) =4—-3In3 ~ 0.7042
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1.12 Limits via Integration

Compute

VEk+n —|— n
li
Jm Z
by interpreting the sum as Riemann sum for approximating an integral.

Resources: Riemann Integral

Problem Variants

2n 1
li —_—
novoo ; v n(k+2n)

.77
check
3n
k? —n?
B lim Z
n—oo TL3
k=
7
check
u k

check
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Solution

b
Riemann sum for / f
a

special choice of a uniform partition
a,a+h,a+2h,....,0—h,b

and sampling points at the subinterval endpoints, i.e., x, = kh € [a + kh —
h,a+ kh]  ~

b
h Y fla+kh) — [ flz)de
a<a+kh<b @

Vv
Riemann sum

J/

f
A
—
77
Yk | |
T » :L'
a T, b
3n
o o VEk+n
Application to the limit of s, = Z for n — oo

“—~ nyn
noting that vk +n/y/n = \/k/n+ 1 and writing the sum in the form of a

Riemann sum with h=1/n,a=0,0=3 ~

sn:% Z VEk/n+1

0<k/n<3

Hence, s, is a Riemann sum for f03 v + 1dz, and, consequently,

Yt 2 =16
0

n—00 s 3

Wl o
w

suited for the given problem; z;, = a + kh — h/2 (midpoint) is the best choice for
numerical purposes
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Chapter 2

Rational Integrands
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2.1 Integral of a Rational Function with a Sin-
gle Pole

4 2
Compute ——dx
P /0 (x+1)3

Resources: FElementary Rational Integrands, Table of Elementary Inte-
grals

Problem Variants

0
m / R
-1 (31'—1)2

—0.0777:
check

check

2 2
1
m /%dx
0 T°+2zx+1

check
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Solution

Simplification of the integrand

expanding the numerator p(x) = z* of the integrand f(z) = ( j_ 1)3 in
terms of powers of (x 4+ 1) (Taylor expansion at z = —1)  ~
2 =p(=1) +p' (1) (= +1) + p//(2_1) (@ +1)°=1-2(x+1)+ (& +1)°
and, dividing by (x + 1)3,
1 2 1

fx) =

@r1P (@rlf za1

Integration of the sum of elementary terms

J(z+a) ™ dz = (xz+a)' 7" /(1—n)+C forn < —1, [(z+a)"tdz = In|z+a|+C
—

4 S| 2 1
/Of(””)d”’ = /0 Gl @r1R ari®

x=4

2
= |— 1 1
{ Mo Tagr et |Lo

1 2 1
— e | (== a9
< 50—|—5—|— n5) ( 2—|— +O>

= —28/25+1n5 & 0.4894

Alternative solution

partial fraction decomposition with the ansatz

x? a b c

@t+1)P  @+1P  @+iZ Tzil
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2.2 Antiderivative of a Rational Function with
a Single Pole

2
—1
Determine / hdw.

Resources: Partial Fraction Decomposition, Elementary Rational Inte-
grands

Problem Variants

74+?Injx — 3|-7/(z — 3):
check

3r—1
m e
/ 22 —4r + 4 dz
?In|z—"7|=7/(z=7):

check

/(1 +2))??/(1 + 2):
check
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Solution

Partial fraction decomposition

rational function f(x) = (z* — 1)/(2x — 1)® with a triple pole at x = 1/2
~»  ansatz

2 -1 a b c

flo) = Cr—1P w—1/2 @—1/27  (e—1/2p

multiplying by the common denominator (z — 1/2)3  ~
22/8 —1/8 =a(z® —x +1/4) + b(x — 1/2) + ¢
comparing the coefficients of 2%, #, and 1 ~»  linear equations

1/8:2a, 0=—a+0, —1/8?(1/4—17/24-0

xz

with the solution a = 1/8, b =1/8, ¢ = —3/32

Integration
/(gjf—w%)n - _nil(ﬁ—i’o)”l +C /xd_x% =In|z — 29| +C
~»  antiderivative
o= / x i/f/2 e —1/18/2)2 G 2/32)3 o
B %m o1y i/f/2 (2 i/(f;;)? ve
_ %1n\2x—1| _ 8;_4 N (8;5%4)2 e

(C=C —(In2)/8)

Alternative solution

expanding the numerator of f(x) in powers of (z — 1/2) (Taylor expansion
at xo = 1/2):
2?—1=(z—1/2)*+ (z — 1/2) — 3/4
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2.3 Area Bounded by the Graph of a Rational

Function

Determine the gray area with
curved boundary described by the
graph of the function

_3—2x
x4l

f()

Resources: Elementary Rational Integrands

Problem Variants

~

C2+a/2
.77
check
r+1 \k
. p—
?P?

44



check

3r+4
] —
f(x) 2 + 5
.77
check
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Solution
The area A below the graph of

Y

bounded by the vertical axis on the left, equals fox* f(z)dz, where x, is the
intersection of the graph with the horizontal axis. Hence, A = [F]j* with F
an antiderivative of f.

e intersection:

0=f(x) <= 0=3-2r — x,=3/2

e antiderivative: writing

5-2+1) 5

f(@) r+1  z+1

F(z)=5n|z+1|—-22+C

A=[F)*=(5n(5/2) —3)— (5In1 —0) =5In5—5In2— 3 ~ 1.5814

=0
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2.4 Integration of a Rational Function of De-
gree (1,2) with Real Poles

Determine an antiderivative of

and compute ff)l f.

Resources: Partial Fraction Decomposition, Elementary Rational Inte-
grands

Problem Variants

)=

B f(z)

47



Solution

Poles
setting the denominator of the integrand

S —1

)= &3

to zero, and applying the formula for solving a quadratic equation — ~-

poles
442 —4-1-3 442

5 5 e, x1=1,29=3

T2 =

Partial fraction decomposition

ansatz for a rational function with two simple poles:

or — 1 a b
f(x)_(x—l)(x—3)_x—1+x—3
. . 5-1—1
e multiplying by z — 1 and settingzr =1 =— a= T3 = -2

e (x—3),z=3 = b="7

Antiderivative

d
/ a =Injz—p/+C ~
r—=p

r—1 x-—3

2
F(x):/— + ‘ de = —2In|z -1+ 7njz -3|+C

Integral

0
/_1F = [F]°, = (—2 Inl +7ln3> - <—21n2+7 ln4>

=0 =2In2
= 7In3—-12In2 ~ —0.6274
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2.5 Integral of a Rational Function of Degree
(1,2) with Complex Conjugate Poles

0
T+ 2

C t — d=x.

Ompue/1x2+2x—|—2 v

Resources: Elementary Rational Integrands

Problem Variants

4
3_
/Qxdx
O.Z'+1

.77

check

1
1
/ I
o 222 —4x+3

7.77:

check
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Solution

Transformation to standard form

rewriting the integrand f in the form

a(x —c)+0b
(x —c)? + d?

in order to apply the formulas for integrating the elementary terms

r+2  (z+1)+1
2+ 20 +2 (z+1)2+1°

fz) =

ie,a=b=d=1c¢c=-1

Integration of the elementary terms

applying the formulas

/( xr—cC dr — ln((x—c)Q—i-dQ)_l_C’

r—c)?+d? 2
1 _arctan((z — c)/d)
/(x—c)Q—i-d?dx B d +c

~» antiderivative

F(z) = /f(a:) de = In((z +21)2 1 + arctan(x + 1) + C

and

/ f@)de = F(0)— F(~1)

-1

In2
_ (n_+f> —(O+0):ln\/§+%%1.1320

2 4

30
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2.6 Antiderivative of a Rational Function of
Degree (2,2)

Determine

(x —1)(x —2)
/ 2@ —3) dx .

Resources: Partial Fraction Decomposition, Elementary Rational Inte-
grands

Problem Variants
2
T
[ | —d
/ 202 — x/2 ‘

xz/?7+1In|?x=7|/

check

1 — 2
] /—xdx
z(r —2)
7?7 —In|x|/?7=7In|x — 2|/2:
check

/ 4+ rx+1
———dz
22 +52+6

74+7In |z + 2|-?In|z+7?):
check
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Solution

Partial fraction decomposition

simple poles of

- De-2) )
M) = =3 ~ 4w

at x = 0 and z = 3 and degreep = degreeq! ~» ansatz

(-1 —-2) b c
J(@) = z(z — 3) _a+5+x—3

determination of a, b, and c:

o r — OO — a=1

0—1)(0—2
e multiplying by z and setting x = 0 _— h = —( 5 )( 3 ) _
—2/3

o (r—3)andr=3 = ¢=2/3

Antiderivative

integrating the elementary terms of the partial fraction decomposition  ~~

/f(x)dx = / —23/5—3+x2£33dx

2 2 2
= x—§In|$|+§ln|x—3]+C’:x+§ln

r—3
T

REC

In general, if degreep = degreeq + n , the constant a in the following ansatz is

>0
replaced by a polynomial of degree < n.
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2.7 Integral of a Rational Function with Com-
plex Conjugate and Real Poles

24
Compute / 3 dzx .
L P4

Resources:  Partial Fraction Decomposition, Elementary Rational Inte-
grands

Problem Variants

1/2 2
m / 37 1

1/2 zt—1

2 2
] ——d
/1 25— 422 + 5z

check

! 4x
. /0 (x+3)(x2+1) dz

check

33



Solution

Partial Fraction Decomposition

The integrand

4 4 4

has a pole at x = 0 and complex conjugate poles at © = +1i, and, therefore,

the ansatz is
(@) 4 a n br + ¢
r)=———=—4+ ——.
r(z2+1) =z 22+1
multiplication by z und settingz =0 = a=4
subtracting the term 4/x from f(x) ~

br+c 4 4 4—-4A@*+1) 4z

2+1 z(@®+1) 2 z(@2+1) 22+ 1]

ie, b=—-4,¢c=0

Integration of the elementary terms

applying the formulas

1 1
/—dlen]x\—i—C, / 2:1: de = ~In|z* + 1|+ C,
x x4+ 1 2

for antiderivatives of the elementary terms  ~-

T 2 =2
/f dx—/ - — x +1d$:[4ln|x|—2ln\x +1]. -]

(4ln2 —2Inb) — (4Inl —21n2)
=0

simplifying, using the rules alnb =1nbd* Ina+1Inb = In(ab), —Ilna = In(1/a)
AN

In16 — In 25 + In4 = In(16 - 4/25) = In(64/25) ~ 0.9400
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2.8 Integration of a Rational Function with a
Polynomial Component

Determine the antiderivative of

_2x3—|—5x2—7x—7
a 202 +Tx — 4

r(z)
and compute ff r(z)dz.

Resources:  Partial Fraction Decomposition, Elementary Rational Inte-
grands

Problem Variants
3 3

m / ~ e
9 x¢—1

check

0 1'4
m/ Y g
/12x2—3x+1 o

0.777:
check
4 4
1
| / 3+x dx
3 3 —w
.77
check
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Solution
Since the degree of the numerator of the rational function

203 + 52 — T — 7
r(z) = 5
202+ Tx — 4

is larger than the degree of the denominator, the ansatz for the partial frac-
tion decomposition contains a polynomial component in addition to the ele-
mentary rational terms corresponding to the poles of r. All coefficients in the
ansatz can be determined by multiplying with the common denominator and
comparing the coefficients of the monomials. The expressions of the ansatz
are integrated using the elementary tabulated antiderivatives.

Partial Fraction Decomosition

polesof r: 222 + 70 —4=0 ~

—T+\/7?—4-2-(—4
2y, = TEV (9 __ 7,9
’ 2.2 4 4

le,x; =—4,29=1/2

Since the degree of the numerator of r is by 1 larger than the degree of the
denominator, the ansatz for the partial fraction decomposition contains a
linear polynomial (degree 1):

(z) 203 + 522 — T — 7 b c n d
r(z) = = qax
202+ Tx — 4 r+4 x—1/2

multiplying with the denominator 22% + 7z —4 = 2(x +4)(x —1/2) of r ~
22% + 52° — Tr — 7= (ax + b)(22° + Tx — 4) + ¢(22 — 1) + d(2z + 8)

comparing coefficients of ¥  ~»  linear system for a, b, c, d:

x3 2 = 2a

22 5 = Ta+2b

r: =7 = —4a+Tb+2c+2d
1: =7 = —4b—c+8d

solution: a =1,0=—-1,c=3,d=—1
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Integration
antiderivative:
3 1
R = -1 — d
(z) /.75 +x+4 r—1/2 v

1
= §x2—x+31n\:r;—|—4\—1n|:c—1/2]+C

definite integral:

/15r = [R(2)])3=(25/2—1/2) — (5—1) +3(In9 —In5) — (In(9/2) — In(1/2))
= 8+44In3 —3Ind ~ 7.5661
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2.9 Integration of a Rational Function of De-
gree (3,4)

The rational function

B 523 + 322+ Tx — 6
ot 4223 + 522 + 8+ 4

r(z)

has a simple pole at z = 2i and a double pole at z = —1. Determine the
antiderivative and compute f02 r.

Resources: Partial Fraction Decomposition, Elementary Rational Inte-
grands

Problem Variants

3x3 — T +5x —2

| r(x):$4_5x3+10x2_10x+4,polesatz:1,2,1—|—i
0
Jo =10
check
1 .
[ | T(I):x4—4x3+5x2—4x+47p01es at z = 2,2,1
1
Jo =227
check
mo(2) v les at z = i, 2i
r(r) = ——————, poles at z =1,2i
5214 P
2
fOT:O???:
check
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Solution
With a partial fraction decomposition, the rational function

bt 432+ T —6
ozt 4+ 223 + 522 4+ 8z + 4

r(z)

is expressed as a sum of elementary terms which are integrated using the
tabulated antiderivatives.

Partial fraction decomposition

Since, for a real rational function, complex poles occur in complex conjugate
pairs, the pole at z; = 2i corresponds to a pole at zo = z; = 2i = —2i.
With the double pole at z34 = —1, this leads to the factorization of the
denominator and the following ansatz for the partial fraction decomposition:
5034+ 32> +7x—6 ax+b c d

r(z) = 5 — = + + 5

(2 +4)(x +1) 224+4 xz+1 (z+1)
((z — 2i)(z + 2i) = 2* + 4)

multiplying by the common denominator ~~

52° + 3102 + 7r — 6 = (ax + b)(x + 1)* + c(2® + 4)(z + 1) + d(2° + 4)

comparing coefficients of the monomials 2 ~+  linear system for a, b, c,

d:

3 5 = a+tc
x? 3 = 2a+b+c+d
T 7 = a-+2b+4c
1 —6 = b+4c+4d
solution: a =3,0= -2, ¢c=2,d= -3, ie.,
3x 2 2 3

r(z) =

214 2+4 41 @ty

Antiderivative

3T 2 2 3

R = — —
(z) 2+ 4 x2+22+x+1 (x4 1)2

dx

—

3
In(2? + 4) — arctan(x/2) +21In |z + 1| + 11 + C
T

DN o
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Integral

/0 r(z)dr = [R(x)]3 = gln(8/4) —(r/4—-0)+2In(3/1) 4+ (3/3 — 3/1)
— In(18v2) — 7/4 — 2~ 0.4515

used for simplifying the sum of logarithms: plna =1Ina”, Ina+1Inb = In(abd)
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Chapter 3

Integration by Parts
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3.1 Integral of a Product of a Polynomial with
Sine and Cosine

™
Compute/ rsinzxdr .
0

Resources: Integration by Parts

Problem Variants

s
[ | / zcoszdx
0

-7

check

[ /7T (m — x)sin(3z) dz

check

check
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Solution

applying the formula for integration by parts,

/ f(@)g (@) dz = [f(2)g(=)];=a — / f'(x)g(x) dz

with f(z) = z, ¢’(z) = sinx, and noting that g(z) = — cos x is an antideriva-
tive of sinz  ~»

/xsinxda: = [x(—cosx)]izg—/ 1(—cosx)dx
0 0

= (7T—0)+/ cosxdr =,
0

cosm=—1

since -
/ cosxdr = [sinz];=g =0—-0=0
0
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3.2 Antiderivative of a Product of a Polyno-
mial with a Trigonometric Expression

Determine an antiderivative of f(z) = z cos® z sin(2z).
Resources: Integration by Parts, Table of Elementary Integrals

Problem Variants

B f(x) =z cosxsinx

—?cos(?x)/? +sin(?x)/7:

check

B f(z) = 2? cos(4w)

—sin(?x) /7742 cos(?x)/? + x” sin(?x) /7

check

B f(r) =2 sin?(22)

—cos(?x)/?7?="7sin(?z)/? + 2° /7

check
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Solution

To determine an antiderivative of a product of a polynomial p with a trigono-
metric expression f, f is first converted to the standard form of a trigono-
metric polynomial:

f(z) = % + Z ay cos(kx) + by sin(kx) .
k=1

If this is not easily possible via trigonometric identities, a method which

always works uses Euler’s formulas

el 4 e7iv . elv — g7i¢
cosp =————, sinp=—mr——

4 2 4 21
After expanding the resulting expression from the replacement of cosine and
sine by exponentials, the coeffients a; and by are easily identified. In a final
step an antiderivative of pf is obtained by successively reducing the degree
of p via integration by parts:

/pfzpF—/p’F

with F' an antiderivative of f.

2

Conversion of f(x) = cos”z sin(2z) to standard form

applying Euler’s formulas with ¢ = z, ¢ = 22 and using the abbreviation

= eia: (eikm — Zk, e—ikm — Z—k) ~—
1) (24+1/2)22%2—-1/22
xr —=
22 2i
(PR H241/2)(22 - 1)) 2422 -2/ -1/
B 8i N 8i

converting back to real form, noting that (2% — 1/2%)/(2i) = sin(kz) ~

flz) = sin(22x) N sinE:lx)
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Antiderivative of x f(x)

integrating by parts =~

sin(2x)  sin(4xz)
/ x ( 5 + 1 dz
P . ~~ /
!
2x

s (_cosfl ) cos 4x> /v ( cos(2 )_cos1(§x>> "

PN —
F F

xcos(2x)  xcos(4x) N sin(2x) N sin(4x)
4 16 8 64
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3.3 Integrals of Products of Polynomials with
Exponentials

Compute
1 2
a) / re’dx b) / (22 4+ 1)*e** dx
0 1
Resources: Integration by Parts, Table of Elementary Integrals

Problem Variants

B a) fol(l +x)e *dx, b) ffl r?e” dx

H a) fOQxe_z"” dz, b) f_ll(l +z)2e "dx
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Solution

For a product of a function g with a polynomial f, integrating by parts,

[ o=t~ [ 1o, )

reduces the degree (f — f’) and thus simplifies the integral, provided that
a simple antiderivative of ¢’ (¢’ — g) exists.

a) fol xe® dw
noting that the exponential function does not change when differentiated or
integrated, applying (1) with f(z) =z, ¢'(x) =e* ~

1 rx=1
/ z e dx = [ z e* ] — 1 e® dx
0 \f,./\,./ \f,./v =0 0 \f/v
g g ! g

b) f01(2x +1)%e** dx

noting that

d 1
au(px +q) = pu/(px + q), /u(p:c +q)dx = 5U(p:c +q)

with U(y) an antiderivative of u(y), applying (1)  ~

1
s = /(2x+1)2 e* dx
0 T\f"

9

J
v -

A

= (o - o e e as

B
e A=3%e%/2-1/2=9¢e?/2—-1/2
e B is computed by integrating by parts a second time:
1 ) 1
B = / 22z +1)e* dz = [2(2z + 1) e*/2]"_ —/ 4e* /2dx
0 0
= 32 -1-— [e2x}i20:3e2—1— e? +1=2¢
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combining the results  ~-

s=A—B=9e*/2—-1/2—-2e*>=5e*/2—1/2 ~ 17.9726

Remark
Noting that a* = e integration by parts applies to integrands which are
products of a” with polynomials p(z) as well.

69



3.4 Antiderivatives of Products of Polynomials
with Exponentials

Determine the antiderivatives of

a) flz)= 3z +1)e*/? b) g(x) = x* cosh(2z)

Resources: Integration by Parts, Table of Elementary Integrals

Problem Variants

B f(z)=0Bz—-1)72e™

—(?22 +1)e 3%/
check

B f(z) = (2z — 3) sinh(x/2)

(?x—7) cosh(z/2)—7 sinh(z/2):
check

B f(x) =2z cosh(2z — 1)

? sinh(2z — 1)/7 — cosh(2z — 1) /7:
check
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Solution

With integration by parts,

/pU’ = pu — /p’u (1)

the degree n of a polynomial factor p is reduced, and eliminated with at
most n such integrations. This leads to a more elementary expression which
is easily integrated.

a) antiderivative of f(x) = (3z + 1) e*/2

applying (1) with p(z) = 3z + 1, v/(z) = e®/2  ~

_ z/2 _ z/2 x/2
F(z) = /(Sx—l—l)e de =3z +1) 2e 3 2" dx
u(z) P (z)
= (62 +2)e"? —12e"? 4 C = (62 — 10) "> + C

b) antiderivative of g(z) = z? cosh(2x)

noting that

cosht:etzet, /coshtdt:sinht—kC:et_Qet+C,
integration by parts ~-
I Z
G(x) = /\mf_/ cosh(2z) dz = 2° 1simh(Qx) -2 1sinh(Qx) dx
p(x) \7(;)_/ Lu(;)_’ P'() ’

integrating the term B by parts, noting that [sinh¢dt = cosht +C  ~
1 1
B = /xsinh(%‘) dz = 3 cosh(2z) — / 5 cosh(2z) dz
1 1.
= 5 cosh(2z) — 1 sinh(2x) + C
adding the term A~

2
1
G(z) = % sinh(2x) + ) sinh(2z) — g cosh(2z) 4+ C
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3.5 Integrals of Products of a Polynomial with
Logarithms

Compute
2 2
a)/ 2 Inzda b)/ 2% In? z dx
1 1
Resources: Integration by Parts, Table of Elementary Integrals

Problem Variants

Y ff(S—x)lnxdx, b) f121n2(2$—1)dx

H ) fol\/flnxdx, b) folxlnz\/fdx

a) —=7/7 b) 1/77:
check

H ) ff(lnx)/xdx, b) f12(1n2x)/x2dx

a) 0.77 b) 0.077:
check
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Solution

For a product of a monomial f(z) = 2™ with a power of a logarithm ¢(z) =
In" z, integrating by parts,

/abf’gz [fg]fi—/abfg’, (1)

n
reduces the exponent of the logarithm (g(z) = In"z — ¢'(z) = —In""'2)
x
and thus simplifies the integral. Repeating this procedure n times eliminates
the logarithm.

a) ff r?’Inzdr

applying (1) with f'(z) = 22, g(z) =lnz  ~

2 2 2,_$/L
22 Inx dz = [m331nx} —/ 22/3) (1/2) dz
[‘yg' jsen] - | ER0D
g/

= 8(In2)/3—0— [¢*/9]"". = 8(In2)/3 —8/9 +1/9
= 8In2/3—7/9 ~ 1.0706

b) ff 23 In? 2 da

applying (1) ~»

2 2
s [ wtsar= [t 1w - [t /e meds
g a ~~ 4

B

e A=14In%2 sincelnl =0
e B is computed by integrating by parts a second time:
2 2
B = / (z°/2) Inz dz = [(z*/8) lnﬂwii —/ (z*/8) (1/z) dz
1 r= 1 T

= 22— [27/32]"> =2In2 — 1/2 + 1/32
rx=1

combining the results  ~-

s=A—B=4In2— (2In2 —15/32) = 15/32 — 2In2 + 41n*2 ~ 1.0042
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3.6 Antiderivatives of a Product with a Loga-
rithm

|
ne 2forx>0.

(x+1)

Determine the antiderivative of f(x) =

Resources: Integration by Parts, Table of Elementary Integrals

Problem Variants

B f(r)=In(z+1)/2°

Ina?(z??)In(z+1)/? + C:
check

B (2) = In()/Va

(?Inx??)/z+ C:
check

B f(r)=vzln’x

2072(?In® 227 Inx+7) /27 + C:
check
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Solution
Integrating by parts,

/f’ngg—/fg’, (1)

with ¢ the expression with logarithms usually leads to a simpler integral,
since differentiation replaces Inwu(z) by «'(z)/u(x) (by 1/x for u(z) = z).

Antiderivative of Inxz/(x + 1)?

applying (1) with f'(z) = 1/(z +1)? and g(z) =lnz  ~

1 1 1 1
F(x):/ﬁlnxdm:— 11n:17—/— T dz
(x+1) x+ r+1 =z
f(2) g'(x)
partial fraction decomposition of the integrand of the last term,
111
(z+Dx z x+1
PUNN
Inx 1 1
F = — - —
(z) r+1 * / r x+1
1 1
= -7 +Inz—In(z+1)+C = T —In(z+1)+C
r+1 x+1
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3.7 Integral of a Product of Sine/Cosine with
an Exponential

w/2
Compute / sin? z e?® dx .
0

Resources: Integration by Parts

Problem Variants

s
[ | / cos? ze® dx
0

check

iy
[ | / coszsinz e dx
0

check

i
[ ] / sin® z e** dz
0

777
check
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Solution

If f/ =a+0bf and g = cg”, integrating an integral I of the product f(g’)’
by parts twice leads to an equation for . This is the case, e.g., for f(x) =

2

sin(kz), cos(kx) sin®x, ... and g(x) = e,

w/2
I = / sin’ z e?® dx
0

integrating by parts (differentiating sin® z and forming the antiderivative of

eZJ:) s
A B
/2 ~ o2 x:ﬂ/g T rm)2 o2 A
= sin?z e dx = [sian —} — 2sinx cosx, — dx
u(z) v'(z) S~~~ u/(z)
v(x)

e sin(r/2) =1,sin0=0 = A=e¥/2/2-0=¢"/2

e a second integration by parts, noting that sinxcosz = 0 at the inte-
gration limits and cos®? 4+sin> =1 ~»

/2
B = / sinzcosz, e dx
0 "
u(x) v'(z)
2T 1 p=7/2 /2 2
= [sinxcosx 67] —/ (cos® x — sin® ) %dx
=0 0 N ~~ d
?(;;’ w(z)=1-2sin’z
/2 @2 /2
e
0 0

The original integral I appears on the right side!
combining the computations ~~
1
I:A—B:e”/2+e”/4—zl—]

solving for [ ~~
I=(3e"-1)/8
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3.8 Antiderivatives of Products of Sines/Cosines
with Exponentials

Determine the antiderivatives of

a) f(z) = cos(2x) e** b) g(x) = cos(4x) sin(2x)

Resources: Integration by Parts

Problem Variants

B [sin(3z)e *dx

—(? cos(3z) + sin(3x)) e */77:
check

B [sin(2z) sin(3z) dx

(?sina?sin(?x)/77:

check

B [cosz sinhzdx

cosx???7x /74777 sinh x /7

check
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Solution

For products f(z) of sines/cosines and exponentials, an equation for the
antiderivative F'(x) can be obtained by twofold integration by parts.

a) antiderivative of f(z) = cos(2x)e®

integration by parts  ~~

A
(2 —
u'(z) (@) T V' (z)
a second integration by parts ~-
—4F(x)

A

A= /ZSin(Qm) e* dx = —cos(2x) e — /(— cos(2z)) 4e** dx
—_— —_——— ~~
u (z) v(x) u(z) v’ (x)
combining the computations and solving for the antiderivative F'(xz) ~
_ sin(2x) o4 sin(2z)
2 2
ie., F(z) = (sin(2z) + 2 cos(22)) e** /10

F(x) e 4 cos(2x) e** — 4F (1),

b) antiderivative of g(z) = cos(4x) sin(2z)

Instead of using integration by parts (which is possible), an alternative is to
apply Euler’s formulas:
et 1 ot oit _ it
cost = ———, sint = -
2 2i

substituting t =4z and t =2z  ~~»
G(z) = /COS(4ZL‘) sin(2z) dx (et 4 e 1) (BT — 72T dy

1 . . N N
— 4_ eﬁlx - e21x te 2iz e 6iz dz
1

T4

applying Euler’s formulas in the opposite direction by combining the first
and last as well as the second and third summand of the integrand  ~~

1

Glo) =5 / sin(6z) — sin(2z) dz = —

6 2
. cos(6x) N cos(2z)

12 4 +C
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3.9 N-fold Integration by Parts

1
Compute / (1—2%)"dz.

1

Resources: Integration by Parts

Problem Variants

[ | f02 (2 — z)"dx

integral for n = 10: 7.77:
check

[ ] fol 2" In" x dx

integral for n = 10: 0.000077:
check

B [ sin® 2 (cos™z sinz) do

integral for n = 5: 0.00077:
check
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Solution

writing the integrand as a product, (1 —z%)" = (14 z)"(1 — x)", integration
by parts ~

1
/ (1—2)" (1+x)" dx
R ()

1— n+1 = 1 1— n+1
= [—¢ (1+:c)"] —/ _d=om n(l+2)" ! dz,
n+1l s~ ——lz=-1 1 n+1 —_———

v(z) v'(z)

where [...]*=1, =0, since (1 —z)(1+z) =0 for z = +1
integrating by parts one more time  ~-

n 1
/ (1 o m)n—i—l (1 + l,)n—l dx

u (z) v(z)

n (1 —o)nt?
—0— AT ()t d
n+1/_1 o n )(V—l—x) x

' (x)

(—~

u(z)

Again, the first term (omitted), [...]2=!, = 0, since the integrand contains

the factors (1 — z) and (1 + z), vanishing at 1 and —1, respectively.
The general pattern is clear: integrating by parts n — 2 more times  ~~

n n-—1 1t
e 1— 1) (d
n+1ln+2 2n _1< )" de
__n (1 — o)t ! _ (n)? 92n+1
~ (2n)!/n! 2n+1 |,_, (2n+1)!
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Chapter 4

Substitution
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4.1 Integration, Using the Chain Rule
Compute

Resources: Substitution

Problem Variants

1
[ | / 2 (2® — 1)tde
0

1/77:
check
- /” sinx de
0 2+cosw
.77
check
° /1
I/ nxdx
1 x
.77
check
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Solution
By the chain rule,

d

o F9(@) = fg(@)g'(x), [=F,

i.e., for an antiderivative F' of f, F/(g(z)) is an antiderivative of f(g(x))g'(z).
Hence, by the fundamental theorem of calculus,

r=b

| o) @as = [Figp]” = PO 1)

r=a
Y

9
Application to / /14 \/E/ﬁdx
0

e rewrite the integrand in the form f(g(z))g'(x):

/1 +\/E/\/E: 2(1 +\\/§/)1/2 %x_lﬂ, fy) =214 y)/?
——

9(x)

g'(z)

4
e apply the formula (1) with F(y) = 3 (14 )*? an antiderivative of f:

y=V9
é(1+y)3/2 _32 4.2
3 y—vs 3 3 3
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4.2 Antiderivatives, Using the Chain Rule

Determine the antiderivatives of

a) $Qi ; b) 643,‘@ C) S]n(?l’) COS(Z')

with respect to the variable x .

Resources: Substitution

Problem Variants

B cxp(z+expa)

check

B cos(cos(2x) sin(2z))

7777(cos(22)) /7 + C:
check

1
r+ T

In(? 4+ ) + C-
check
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Solution

If an integrand can be written in the form
9(@) = c fly(z)) y'(z) (1a)
then, by the chain rule, the antiderivative of g is
G(x) = c F(y(x)) (1b)
with F' an antiderivative of f with respect to the variable vy .
a) g(x) = x2ﬁ— 3 dx

identify y, ¢/, f, and ¢:

o) = (3) 50
= y(@)=2+3,y(z) =2z, f(y) =1/y, c = 1/2

/\ Note that the factors (1/2) and 2 have been added to obtain 2x as deriva-
tive of 22 + 3.

1
applying (1) with F(y) = /— dy = In|y| + C the antiderivative of f  ~~
Y

1 1
= —1Inly| +C:§1n(x2+3)+0

2

y=x2+3 y=x2+3

b) g(x) = e*V1 + etz
adding an additional factor, g(z) = (1/4)V1 + e (4¢**) and

y(x)=e', y(z)=4e", fly)=(1+y"* c=1/4

2
F(y) = /(1 + y)l/z dy = 5(1 +9)*2+C ~ antiderivative

12 1
- -1 3/2 - (1 4x\3/2
43( + ) +C 6( + )4 C

y:e4z
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¢) g(x) = sin(2z) cos(x)

sin(2x) = 2sinzcosx  ~~
g(x) = (2sinz cosz) cos v = (—2)(cos® z)(— sinx),

ie.,
y(z) = cosz, y(x)=—sinz, f(y)=y> c=-2

substitution, according to (1) ~-»  antiderivative

1 2
- QF(y)|y:y(m) = -2 ~§y3 +C = —3 cos®x + C

Yy=cos x
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4.3 Antiderivative of a Rational Function In-
volving Square Roots

Determi / T g
etermine — AT .
V2 + 3

Resources: Special Substitutions

Problem Variants

[ =
S E— O ¥
1++v/x+1

r+ 1)7/2—??:
check

] /—V%_ldx
x

72z — 1—7arctan/2z — 1:
check

m /ijgdx

r+7y/z+7In(y/2—7):
check
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Solution

For an indefinite integral F'(x) = [ r(z,+/pr + ¢) d with a rational function
r, the square roots are eliminated by the substitution

y=virta, dy=,ode.

This yields the indefinite integral

Gly) = [ 1 - /) 2 ay

J

7(y)

with a rational function 7, and F(z) = G(y/pr +q) .

Application to / x/V2x + 3dx

substituting y = v2x +3 < x = (y* —3)/2 with dz = ydy ~

2-3)/2 2.3 1, 3
G(y):/—(y )/ ydy:/y dy= -y’ —sy+C
N——

y 2 67 2

7(y)

backsubstitution ~» antiderivative

Flz) = G@mx+$:é@x+awﬁ—;mwafﬂ+c
= (x/3—=1)V2x+3+C

Alternative solution

expressing the numerator x in terms of 2z + 3, i.e., writing

1 3
— (2 _2
x 2(93+3) 5

~» integrand consisting of elementary terms:

€T 1 3
T qe= [ —e 432 = 22e+3)124
/’2x+3;x /é($+3) J(2r +8) 2 da
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4.4 Substitution for Integrating a Rational Func-
tion of Fractional Powers

Compute
64 dr

1 VEEVT
Resources: Special Substitutions, Elementary Rational Integrands

Problem Variants

16
VT4,
1+
7.7
check
1 -1/2
T
[ | /0 yR=YE dz
.77
check
! dx
0 T+ Va2
.77
check
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Solution

Rational functions of z, /7, and x'/¢ can be transformed to a rational
function of y with the substitution

r=1y", dx:ry’”_ldy,

where r is the least common multiple of p and q.

64 dz

L VrAVr

Application to

e substitution:
least common multiple of p=2and ¢ =3: r =6

substituting = y°, dz = 6y° dy, and transforming the limits of inte-
gration,r =1—=y=1,2=64 2 y=v64=2 ~~

64 4y 2 Gy 23
1 VTV 1 Yty 1 y+1
—_—

A

e computation of the rational integral:

expanding p(y) = y* in terms of powers of (y + 1) (cubic Taylor poly-

nomial at yg = —1) ~
3 (1
= (o s ) =+ 02+ ()
k=0 '

dividing by (y +1) ~

2

1

6A = 6| ——+3-3(w+1)+(y+1)32d
/1y+1\ (y+1)+y+1)dy

-~

1—y+y?
= [~6ln]y + 1]+ 6y — 3y” + 24°]'_
— —6(In3—1In2)+ (12— 6) — (12— 3) + (16 — 2)
= 11— 61n(3/2) ~ 8.5672
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4.5 Substitution y = exp(x)

Determine an antiderivative of f(z) =

Resources: Substitution

Problem Variants

1+¢e"
. f(x)ZZ—l—ew

1

e —3+2e%

(In(? +€e®)+7)/7:
check

B f(z) = exp(exp(z)) exp(2z)

(exp(?x)—7) exp(exp(?z)):
check

eQz

SBre

B f(z)=

(26" [7=7)V7 4 e*:
check
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Solution

The substitution
y=¢€", dy=e'dr < dr=dy/y

eliminates exponential functions in an integrand, which usually leads to sim-
plifications.

dx
et —3+2e 7

/ dy/y _/ 1 q

7l @ - - y

y—3+2/y y2 — 3y +2
——

9(y)

applying this substitution to /

construction of an antiderivative of g with partial fraction decomposition:
polesat yy =1 and yo =2 ~» ansatz

) 1 a n b
g y —_= —_=
(y—Dy-2) y-1 y—2
o . 1
e multiplying by y — 1 and settingy =1 — a= 13~ -1
o (y—2),y=2 = b=1
integrating the elementary summands ~»  antiderivative
1 1 Yy —
Gy)= [ ——+——dy=—Inly—1|+Injly—2|+C =1In +C
y—1 y—2 y—
ing the substituti v tiderivative of f(z) !
reversing the substitution y = e* ~-»  antiderivative of f(x) = :
& 4 e —3+2e 7
e’ —2
F(x)=1 C
@) =[S =2+
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4.6 Trigonometric Substitution for an Integrand
Containing the Expression v/x2 + a2

Determine the antiderivative of

and compute f33\/§ f.
Resources: Substitution, Special Substitutions

Problem Variants

1
[ | / 22Va? + 1dx
0

.77
check
2 3
m / Y dz
0 2 +4
.77
check

check
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Solution

Integrands, containing the expression v/z2 + a?, can be simplified with the
trigonometric substitution

a a
r=atany, dr= dy, Va2+a?=

cos?y cosy
3V3 dz
Application to _
3 x2vx?+9
. . 1
e antiderivative of the integrand f(z) = —0———:
x2Vax?+9
substituting
3
r=3tant, dxr= dt, Va2+9=
cos?t cost
PUNN

e dz _/ 1 3
: B 2222+ 9 ) (9tan®t)(3/ cost) cos? t

cost
tan t:Sint / 9 SiIl2 t d
———

cost
g(t)

Using that, by the chain rule, —1/u(t) is an antiderivative of u/(t) /u(t)?,
the antiderivative of g(t) is

1
 9sint
reversing the substitution x = 3tant ~»  antiderivative of f:

1
~ 9sin(arctan(z/3))

———
t

G(t) =

+C

F(x) =

Not an obvious expression!

° f;’\/gf:
Noting that tan(rw/4) = 1, tan(7/3) = v/3, the integral equals
1 Ve 1 . 1
9sin(arctan(x/3)) | ,_, 9sin(arctan v/3)
1 1 2 2

N NG

9sin(arctan 1)

= " Osm(n/3) | Osin(n/4)

~ 0.0288.
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Remark
If the antiderivative of f is not of interest, a faster way to compute f;’\/g fis
to transform the integration limits,

r=3—t=arctanz/3 = arctanl = 7/4, z=3V3—>t=mn/3,

and compute the transformed integral f;/f g(t) dt instead,

3v3 t=m/3 ! o
f= [G(t)]t:ﬂ/4 = {_9811115]

3 t=m/4

leading (obviously) to the same result.
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4.7 'Trigonometric Substitution for an Integrand
Containing the Expression /a2 — x?2

Determine an antiderivative of

and compute f02 f-
Resources: Substitution, Special Substitutions

Problem Variants

3
[ | / 22V9 — 22 dx
0

7.7
check
VAP
[ ] ——dx
/0 V1— 22
.77
check

check
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Solution

An integrand, which contains the expression v/a? — 22, can in many cases be
simplified with the substitution

x =asint with t € [-7/2,7/2], Va®>—2?=acost, dxr=acostdt.

Application to

[

1,3

Vi

e antiderivative F'(x) of the integrand f(x) =
substituting

r=2sint, V4 —x2=2cost, dr=2costdt

PUNN
2sint)?
F(z) = /mQCOStdt: S/Singtdt
2cost
Writing sin®t = (1 — cos?t)sint and substituting u = cost, du =

—sintdt  ~

F(x) —8/u2—1dU—8(u3/3—u)—|—C’
reversing the substitutions,

V4 — (2sint)? 4 — 22
s t p—y ]_ —_ 1 2 s p—y
u=cost =11—sin 5 5

PUNN
4 — 22)3/2 2
Flz) = %—%/4—&: ! ;8\/4—3724—0
® f02 f
fundamental theorem of calculus ~»
2 2 r=2
1
/f:[F](Z):[—JC;_S\/Zl—a:Q :—0+§\/Z=§6
0 =0
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4.8 Hyperbolic Substitution for an Integrand
Containing the Expression v/x2 — a2

5 /2 9
Compute / * 5 dx .
3 T

Resources: Substitution, Special Substitutions

Problem Variants

2
[ | / 22Vr? — 1dx
1

.77
check
2 3
m / T dz
1 5132 1
.77
check
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Solution

An integrand, which contains the expression v/z2 — a?, can in many cases be
simplified with the substitution

x =acosht, Va?—a?=asinht, dr=asinhtdt. (1)

Application to

/5 N

——dx
1.2

3

substitution (1) with a =3~

b . b : 2
3sinht h*t
/L?)sinhtdt:/ Sm—Zdt
o (3cosht)? o cosh”t

since 3 cosh 0 = 3, and with b = arccosh(5/3) > 0 <» 5 =3 coshb
integrating by parts =~

b . - b
ht —1 qt=b -1
/sinht S dt = [sinht } —/ cosht dt =: A+ B
0 0 osht

cosh? ¢
~—

v/(t) v(t) v(t)

e first term: sinh 0 = 0, cosh? —sinh* =1 =

_Sinhb__\/coshzb—l B VB3P -1 4

coshb cosh b b—arccos(5/3) 5/3 5

e second term: B = — fob —1dt = b where

b b
e’ +e
coshb =

=5/3 <= z+1/2=10/3 < 322 -102+3=0

solving this quadratic equation  ~~

~ 10+v100—-4-3-3 10+38

2-3 6

z
with 2z = 3 leading to a positive value b =1n3

adding the results ~~» A+ B = —4/5+1n3 ~ 0.2986 as value of the
integral

100



4.9 Integration of a Rational Trigonometric Func-

tion
Compute
/”/ 2 2dt
o 4dcost + 3sint
Resources: Integration of Rational Trigonometric Functions, Partial
Fractions

Problem Variants

/2 1
o
x/3 SN 1

check

T 4
| s
o 3 -+cost

check
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Solution

Substitution

standard substitution x = tan(¢/2) for an integrand, which is a rational
function of sint and cost =~
1—a? 2x 1+ x?

cost = ——, sint=——, dx
14 22’ 14 22’ 2

dt
transformation of the boundaries
t=0—z=tan0=0, t=7n/2—z=tann/4=1

application to the integrand 2/(3sint + 4cost) ~

/ 2dt /1 2(1 + 2?) 2,
- x
o 3sint + 4cost o 3(2x) +4(1 —22) 14 22
1
—1
o r2—3r—1

(z)

[NE]

Partial fraction decomposition

?—3r-1=(2-2)(z+1/2) =

The integrand r has simple poles at © = —1/2 and « = 2, and, decomposing
into partial fractions, can be represented in the form

B 1 B a b
e Py [ e s RS

multiplying by (x 4+ 1/2) and setting x = —1/2  ~»

1 2

YR A

multiplying by (x — 2) and setting t =2~
1 2

T2+1/2 5
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Integration
Jdz/(z —p)=In|z —p|+C,Inp—Ing=1Inp/q ~» antiderivative

r+1/2
x—2

2 2 )
R)= [r@de= 2172 - S -2+ 0= 2

REC
inserting the boundaries  ~~

/0 r(z)dr = [R(x)]; = g (In(3/2) — In(1/4)) = g In6 ~ 0.7167
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Chapter 5

Solids of Revolution
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5.1 Volume of Solids of Revolution with Re-
spect to Different Axes

Determine the volumes of the
solids resulting from rotation of
the graph of the function

y:].—l'2, OSxS]-a

about the z- and y-axis, respec-
tively.

The cross sections of the solids are
depicted in the figure, and have the
dark gray area in common.

Resources: Volume and Surface of a Solid of Revolution

Problem Variants

B y)=1—-z,0<z<1

check

B y(z)=cosz,0<az<7/2

check

B yx)=e"0<2<1

check
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Solution

Rotation about the z-axis

As depicted in the figure, the solid S can be described as the union of discs
D,, 0 <z <1, with radius y(z).

Hence,
1 1 1
volS = /Wy(l‘)le':’]T/ (1—m2)2dx:7r/ 1—22* +2*da
0~~~ 0 0
area Dy
2., 1,7 2 1 8
_ _z bl =n1|ll—-=4+=)=—m~1.6755.
W[:c 3£L’ +5xL_O 7r< 3+5) 157r

Rotation about the y-axis

As depicted in the figure, the solid S can be described as the union of cylinders
C,, 0 <z <1, with height y(z) and radius z.
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Hence,

1 1 1
volS = /27rxy(x)dx:27r/ w(l—xQ)dx:%r/ r— a2 dx
0 ~—~— 0 0

area Cy
1, 1,07 11
27 {295 i L_O T (2 4) 7/ 5707
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5.2 Surface of a Solid of Revolution

Determine the surface of the solid of
revolution with cross section and rota-
tion axis depicted in the figure, which

is generated by the radius function 0

r(t) =sint, 0<t<m.
Resources: Volume and Surface of a Solid of Revolution

Problem Variants

B r(t)=¢,0<t<1

check

check
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Solution

applying the formula

b
area S = 27‘(’/ r(t) /14 7(t)2dt

for the surface of a solid of revolution S with radius function r(¢), a <t < b,
tor(t)=sint,0 <t<m ~

™ w/2
area S = 27r/ sintv1+cos?2tdt = 47?/ sint v 1+ cos?tdt
0 0

symmetry

substituting ©* = cost, dr = —sintdt¢, and noting that ¢t = 0 < =z = 1,
t=r/2< =0~

1
47?/ V1+22dx,
0

since reversing the order of integration changes the sign of the integrand

a second substitution, = sinhu, do = cosh v du, noting that 1 + sinh*u =
cosh®u  ~

arcsinhl arcsinhl u —u\ 2
47T/ coshu (coshudu) = 47r/ (%) du
0 0

arcsinhl T bl
_ _ u=arcsin
=T e+ 2+e 2“du:—[e2“+4u—62ﬂ
0 2 u=0

J/

-~

u = arcsinh 1 <= sinhu = (e" —e™*)/2 =1, i.e,, with £ =¢e* > 0,
E-1/E=2 = E-20-1=0 = E=1+V2
>
substituting v = In E = In(1 + v/2) for the upper limit in A~

areas = 2 ((1+vV2)? +4(1+v2) ~ 1/(1+ V2)?)

2 (ﬁ+ In(1 + ﬂ)) ~ 14.4235

—~
*
=

1 (1—v2)? :1—2¢§+2:(1+\/§)2_4\/§

Ve e van - vap | (-2
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5.3 Profile and Volume of a Vase

5 ....... g
A
\\
Model the profile of the de-
picted vase with the graph of a 0
cubic polynomial and compute
the volume.
.
_5 H H H H H
0 5

Resources: Volume and Surface of a Solid of Revolution

Problem Variants

5

check
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volume: 777.7:

check

volume: 77.77:
check
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Solution

Profile

radius 2 at t =0 and x =10 ~»  cubic polynomial
p(r) — 2 = (az + b)x(z — 10)

with derivative p'(z) = (2az + b)(z — 10) + (az? + bx)

slopesat t =0and z =10 ~»

1 = po) = —10b
0 = p/'(10) = 100a + 10b

first equation — b= -1/10
substituting this value into the second equation = a=1/100

Volume

substituting the polynomial, modeling the profile,

T 1 1
=24 (= - — —10) =2+ —a(x — 10)?
p(x) + (100 10) x(x 0) + 100x(x 0)

into the formula for the volume of a solid of revolution =~

10 10
4

V= 2dr = 44+ —a(z —10)? ’(z —10)*d

7T/0 p(z)” dz 7T/0 + loox(a: )° + T0000° (x ) dx

integrating by parts, noting that the integrands vanish at the limits of inte-

gration, causing the term [...])° to vanish ~ ~
10 10
1 10000
/ v (r—102dr = — 1 g(x—l())?’ dx:T
O u@ ol O wi) e
10 10
1 2000000
/ 22 (r—10)* dz = / 2 %(x —10)% do = o1
o e —

substituting into the expression for the volume  ~~

100 200 580
V=n(40+— + ") = 722 ~ 260.
7T(0+ 3 +21) 7T7 60.3
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5.4 Surface Generated by Rotating a Polygon

Determine the area of the surface,
generated by rotating the depicted
polygon about the horizontal axis.

Resources: Guldin’s Rules

Problem Variants

(8,8)

P
check
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....................................

T
check
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Solution

According to Guldin’s rule for surfaces, the area of the surface, generated by
rotating a polygon P about an nonintersecting axis, is equal to the product
of the length of P and the length of the circle, traversed by the center of
gravity of P.

The center of gravity c of a polygon with vertices ¢y, . . ., ¢, is a weighted sum
of the midpoints of the edges:

c= | =] (et a2 [ 3 la— el (1)
g k=1

k=1 ~ . .
edgelength midpoint

total length
where ¢, = ¢.

Center of gravity

The vertices of the given polygon are
Co = (17 1)7 (77 1)7 (77 7)7 (473)7 (17 7)7 (17 1) =Cs =Cp.

edge lengths: 6, 6, 32 +42=05,5,6
total length: 6 +64+5+546 =28
midpoints: (4,1), (7,4), (5.5,5), (2.5,5), (1,4)

By symmetry, the first component of the center of gravity equals (1+7)/2 =
4.

computing the second component with the formula (1) ~
(6-1+6-4+5-5+5-5—|—6-4)/28:26/7

= ¢=(4,26/7)
Area

The radius of the circle, traversed by the center of gravity, equals 26/7 (dis-
tance of ¢ to the rotation axis). Hence, Guldin’s rule yields the area

28 - 27(26/7) = 2087 ~ 653.4513.
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5.5 Solid Generated by Rotating a Triangle

Determine the volume of the solid, generated by rotating the triangle with
vertices (—4,3), (—2,8), (3,4) about the straight line g : 3z — 4y = 2.

Resources: Guldin’s Rules

Problem Variants

B (0,0), (1,0), (0,1), g:xz—y=2

check

B (1,0),(0,1), (-2,-2), g:z+y=2

check

B (1,0), (3,0), (2,4), g:2=0

check
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Solution

The volume of a solid .S, generated by rotating a set D with center of gravity
¢ about an axis g with D N g = (), can be computed with Guldin’s rule for
solids of revolution:

vol S = 2m dist(c, g) area D .

Center of gravity c

3

1
The center of gravity of a triangle with vertices ay, is ¢ = 3 Z ay .
k=1
substituting a; = (—4,3), az = (=2,8), a3 = (3,4) ~~

c=((—4,3)+(—2,8)+(3,4))/3 = (—1,5)

Distance d to the rotation axis

The distance of a point ¢ to a straight line g : p1z+psoy = q can be computed
by substituting (x,y) = (¢1, ¢2) into the equation of the line:

d = |(prcr + paca) — ql/Ipl,  Ipl = +/Pi +p3.

p1:37p2:_47q:27cz(_175) ~

d=|(3-(~1)—4-5)—2|/V3 +42=|-25|/5="5

Area A of the triangle

The area of a triangle is equal to half of the absolute value of the determinant
of two spanning vectors, i.e., for the given triangle,

() (3)() ()
- dn((2)-(D)] oS
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Volume V of the solid

Guldin’s rule =

V=2rd A=275"- 32—3 = 16567 ~ 518.3628
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5.6 Solid of Revolution Generated by the Graphs

of Two Functions

Determine the volume of the solid, generated
by rotation about the z-axis of the gray area,
bounded by parts of the graphs of the func-

tions f(x) = y/z and g(z) =1 — /x.

]
—
&

Resources: Volume and Surface of a Solid of Revolution

Problem Variants

B f(2) = 2% gla) =4—2% 0< 2 <2

check

B f(x)=sinz, g(zr) =cosz, 0 <z <7/2

s R

.77

check
B f(x)=¢"g(x)=e" —-1<2<1/2
7.7

check
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Solution

application of the formula for the volume of a solid 5, generated by rotating
theset A: a <z <0, f(z) <y < g(zr) about the z-axis:

vol S = 7T/bf(al:)2 —g(x)*dx

Since, in the given problem, the inequality between the two functions is
reversed at the intersection of their graphs, the left and right part of the
volume has to be computed separately.

Intersection of the graphs

VE=f(x)=g() =1~z

= r=1/4
Left part of the solid
0<z<1/4, f(z) < gla):

1/4 1/4
vol Siefy = 7T/0 g(x)* — f(x)*dx = 7T/0 (1— Vz)? — (Vr)* do

Right part of the solid
1/4<z <1, g(z) < f(z):

vol Syugn = /11 (VI — (1 — Va)de = > r

/ 12

adding the volumes  ~~

1 5 s
vol S = vol Siegs + Vol Syight = ETF + Ew =3
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5.7 Volume and Center of Gravity of a Hyper-
boloid

Determine the center of gravity of the hyperboloid

S:V/1I4+ax24+9y2<z<3.

Resources: Volume and Surface of a Solid of Revolution, Center of
Gravity of a Solid of Revolution

Problem Variants

B paraboloid S: 22 +92 <2<1

z-component of the center of gravity: 7.77:

check

B coneS: 22 +9y?<22<1,0<z%

z-component of the center of gravity: 7.77:

check

B cllipsoid S: 22+ 92 +222<2,0< 2

z-component of the center of gravity: 7.77:

check
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Solution

application of the formulas for the volume and the z-component of the center
of gravity of a solid of revolution S with radius function r(z), a < z < b:

b
volS = 7r/ r(2)?dz

b
c, = 7r/ zr(z)2dz/volS

Radius function
S: 1+ 224+1y2<2<3 <—

2>1 AN 2P HyP<-1<8,
le,r(z) =v22—-1,1<2<3

Volume

3 3
volS = = T(2)2dZ:7T/ 22 —1dz
1

Center of gravity

z-component

3 3
volSec, = 7'('/ ZT(Z)2dZ_7T/ (° —2)dz =
1 1

20 12
'szm/—:—
1.€., C 3 5
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Chapter 6

Improper Integrals
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6.1 Convergence of an Improper Integral over
0, 00)

Decide whether the integral

converges absolutely, converges (but not absolutely), or diverges.
Resources: Improper Integral, Majorant, Minorant

Problem Variants
/ cos ¥ da
o 1+ a2

absolutely convergent (a), convergent (but not absolutely convergent) (c),
divergent (d):

check

oo 1.2
Sin- xr
[ | dx
0 xXr

absolutely convergent (a), convergent (but not absolutely convergent) (c),
divergent (d):

check

o
sin
[ | dx
0 x

absolutely convergent (a), convergent (but not absolutely convergent) (c),
divergent (d):

check
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Solution

It is shown that the integral
*sinx
o VT

converges, but does not converge absolutely.

dx

Absolute convergence

The divergence of [ |f] is proved by constructing a suitable minorant, i.e.,
a nonnegative function, which is smaller than |f| and not integrable.

|sin(z)| = | sin(z + k7)| and monotonicity of the square root =

|sm:r|> | sin(m/4)| S 1/v/2 o 1

a - ,—_—
Ve T Jkn+3n/4 T Jr(k+1) VR
for x € Dy, = 7k + [7/4,37/4], k =0,1,...

~~  possible choice of a minorant: the step function s, depicted in the figure,
which is equal to a; on Dj and zero otherwise

[ |
g

integral of the step function:

nrT n—1
lengthD,) kY2
[ o= Rng s =3

—>  divergence

Convergence
sint <z,xz>0 =
| sin x|

NG <V,

i.e., y/z is an integrable majorant on any bounded interval

sinx

d
z x

b
To show the integrability on [0, 00), the convergence of F'(b) = /
1

for b — oo is established.
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integration by parts  ~-

b b b
/ sing, g Y2 de = | —cosz x_l/Q] - / —cosx (—x%?%/2) da
1 SN =~ N—— 1 1 \ ,

u'(z)  w(z) u(x) o' ()

The first term converges to cos1 for b — oo, and the absolute value of the
integrand of the second term is majorized by 7%/ /2 with

/0 732 /2dx = [—x_l/ﬂf:l =0—(-1)=1.

— convergence

Remark
invoking Maple™ :

int(sin(x)/sqrt(x),x=0..infinity)
~ /2
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6.2 Convergence of Improper Integrals over [0, 1]

Decide whether the integrals

NV 1
a) / © dz D) / Vel dzx
0 0

X

exist or not.
Resources: Improper Integral, Majorant, Minorant
Problem Variants

lﬁdx

g e —1

exists (e), does not exist (n): 7

check

1
m /de
o 1l —cosx

exists (e), does not exist (n): 7:

check

exists (e), does not exist (n): 7:

check
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Solution

An integral of a continuous function f on a bounded interval (a,b] with a
singularity of f at a is absolutely convergent (divergent) if

[f@) <clz —a)’,r> -1 [f@) = clz —a)’, r< -1
—— ——
majorant minorant

for x € (a,a+ 9]. To establish either of the two inequalities, a Taylor expan-
sion at x = a or the computation of an appropriate limit for x — a with the
rule of L’Hopital is useful.

1oV _ 1
a)/e dz
0

X

substituting ¢ = y/z into the Taylor expansion

el =14+t+12/24+13/6 +O(th)

e d

Ve _q 1/2 2 L 23/2/6 L O(z2

c — = v taf +i (640 _ 12 (172 4 1276 + O(x)]
Hence, since |[...]| can be bounded by a constant ¢, the integrable function

271/2 4 ¢ is a majorant for f on the interval [0, 1].

=  absolute integrability

1
b) / Vze* dz
0

The function e'/* grows extremely fast as z — 0. In fact,
lim 2¥ e'/* = 0o (1)
z—0

for any k. To prove divergence of the given integral, the case k = 2 suffices,
since, as a consequence, for z in a sufficiently small interval (0, ],

.TQ el/x > 1 - xel/:c > ._'L'_S/Q,

i.e., 73/% is a nonintegrable minorant.

Turning to the proof of (1) for £ = 2, the limit can be computed with the
rule of L’Hopital:
f(z) f'(x)

lim —= = lim ,
A g@) e g ()
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if both functions tend to oo (or to 0) for z — a.

applying this formula with a = 0, f(z) = e'/*, g(x) = 1/2?

1/x 1/x —1/72 1 1/x
lime—zlimwz—lime
z—0 ]_/172 z—0 —2/1’3 2 x—0 ]_/CC
applying the rule of L’Hoépital again =—
1/z 1/x —1 /72 1/z
lime zlimwzlime =00,
z—0 1/95 0 —1/:1:2 z—0 ]

confirming (1) for k = 2
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6.3 Integral over a Bounded Interval with an
Endpoint Singularity

Prove the existence of the integral

m

Resources: Improper Integral, Majorant

Problem Variants
2

[ | / In(sin z) dz
0

! sin(In x)
[ | ———dx
oV

Just to appreciate 19" century mathematics: All integrals can be computed
explicity! Use Maple™ to confirm.
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Solution

. . b . . :
To prove existence of an integral fa f, a majorant is constructed, i.e., a

function g, with |f(z)| < g(z) and finite integral f:g.

Construction of a majorant

expanding the integrand f(x) = /1 —xz/(1 — y/z) with 1 + /z and noting
that (1 —v2)(1+Vz)=1—2 ~

/Olf:/()lﬂdx: 01\/7(_1;\/@(11':/011/—1—_—\/?(13”

estimating 1 ++/z by 2 ~»  majorant

g(x)=2/V1—-z

Integral of the majorant

1 1 2 12 -
g—/ dz = /—dy—4 Y=, =4
[u=[ = = [ w=uvn

integrable majorant =  convergence
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6.4 Improper Integral with Parameter

For which values of the parameter r > 0 does the improper integral

T — 2r
/ cos(z°") de
0

3

exist?
Resources: Majorant, Minorant

Problem Variants

w/2 2
[ | / - v dx
o sin(z")

r<?
check

] [Wwdx

3 4+ 4

r>7
check

- /2 In?z
1 (e =1)

r <7
check
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Solution

To prove the existence (non-existence) of fab f, |f| is bounded from above
(below) by an integrable (non-integrable) majorant (minorant).

Construction of a majorant and minorant

Taylor expansion of the integrand f(z) = (1 — cos(2®")) /2%  ~

_ 1—(1—(22)%/2 4+ O(z*%))

. — x4r73/2 4 O(xST*B)
X

f(x)
Hence, for sufficiently small § > 0,

x4’”_3/4§ flz) < "3 0< <.
—_—— S~~~

minorant >0 majorant

existence of f06 z® dz for s > —1 (non-existence for s < —1) ~»  condition
for r:
existence <= 4r—3>-1 <= r>1/2

(non-existence for 1/2 > r > 0)
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6.5 Improper Integral of a Rational Function
of Degree |0, 2]

> 2
C t _— .
ompue/2 3r2 —4r+1

Resources: Partial Fraction Decomposition, Elementary Rational Inte-
grands

Problem Variants
* 1

[ ] / 5 dx
3 T+

check
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Solution

First, the poles of the rational integrand
2

r)=—5——

/() 3x2 —4x +1

are determined, in order to select the appropriate ansatz for a partial fraction
decomposition. Then, the resulting elementary terms are integrated over the
interval [2, 00).

Poles

solving 322 —4x +1=0 ~

4++/42—-4-3-1
2-3

B —2:l:1
T12 = — 3 37

ie,ry=1,20=1/3
corresponding factorization of the denominator of f: 3(x — 1)(x — 1/3)

Partial fraction decomposition

ansatz for an integrand with two simple poles:

2 a b

&) = e Da =13 r-1 2-153
ltiplyi b 1 d setti 1 — 2 1
e multiplyin z — 1 and setting z = = — =
plymg by g 3(1 — 1/3)
e (r—1/3),z=1/3 = b=-1
A It is no coincidence that b = —a. There must be some cancelation to

ensure that the sum of the two terms decays like 1/22.

Integration of the elementary terms

/

1
; dt =ln|t —to| + C and Inu — Inv = In(u/v) ~»

t —to
Oof = lim o de = lim [In|z — 1] — In |z — 1/3|]S
) coo fy —1 x—1/3 c—ro0 r=2
= limlnu—lni:1n5—1n3%0.5108
cvoo e —1/3] 5/3 ’
A

since A - 1forc— oo and limy ,;In A =0
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6.6 Integration of a Rational Function with De-
nominator of Degree 3 over R

Determine the antiderivative of

2—x
r) = —=
and compute [ f .
Resources: Partial Fraction Decomposition, Elementary Rational Inte-

grands

Problem Variants

1

B flz)= 3+ 322 + 227

check
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Solution

First, the poles of )
-
A
are determined to select the ansatz for the partial fraction decomposition.
After expressing f as a sum of simple terms, the antiderivative is obtained
from tabulated elementary integrals. Then, the fundamental theorem of cal-
culus yields [;* f as limit of the integral over [0,b] for b — co.

Poles and Factorization

An obvious pole is 1 = —1.

division by the corresponding linear factor (x + 1):

( 2* +1 ) (z+)=2"—z+1
q(z)
3 4x?
—2
-2 —x

r +1

r +1

0

The quotient
q(z) = (r —1/2)? +3/4

has no real zeros. Hence, there are no further real poles (already apparent
from the monotonicity of 1+2%), and ¢(z) is a factor of the real factorization

of f:
2—x

fle) = @+ )z —1/2)2+3/4)

Partial fraction decomposition

ansatz

2—x _a b(x —1/2)+¢
(z+1)(@2—2+1) 2+1 (z-1/2)2+3/4

fz) =

multiplying by x + 1 and settingx = -1 — a=1
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subtraction of the term 1/(z + 1) from f(x) ~ b= —1, ¢ = 1/2 and,
hence,

2 1 a1 1/2
FO =2 )= g - G e T ao e s (VR
Antiderivative

integration of the elementary rational expressions (cf. the table of elementary
rational integrals):

e Ri(z)=Injz+1|+C
o Ryo(z)=—In|(x—1/2)2+3/4]/2+C

e R3(z) = % arctan ((2x - 1)/\/5) +C

adding the three expressions, noting that Inu — (Inv)/2 5 In(u/\/v) ~

r+1 1
/f \/T—l—l‘—i_ﬁ arctan ((21’—1)/\@) +C
Ri(@)+Ra(@)

Integral over [0, c0)

noting that limy_,; In A = 0 and lim,_,, arctanz = 7/2  ~~

1 m 1 x 23
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6.7 Integral of a Rational Function with Two
Pairs of Complex Conjugate Poles over (—oo, 00)

Compute / dz

xt44

o0

Resources: Partial Fraction Decomposition, Elementary Rational Inte-
grands

Problem Variants
e dz
[ |
/_OO (24 1)(x2+4)

/7

check

& dx
. /_Oo 222 + )2 1 2)

™7/
check

o x
| r————dx
[ @
Hint: Use integration by parts

/7

check
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Solution

First, the poles of the rational integrand

1

fw) = x4+ 4

are determined, the denominator is factored accordingly, and the appropriate
ansatz for a partial fraction decomposition is selected. Then, the resulting
elementary terms are integrated over the interval (—oo, 00).

Poles

2 +4=0 —

2? =/—4 =42

To compute the square roots of +i, the polar form of complex numbers is
used.
writing 2i = 22~

T19 = V2 = £v2e™* = £1/2 (cos(n/4) + isin(r/4)) = £(1 + i)

similarly,
34 =xV—-21==£(1-1i)
factorization:
4
t+4 = H (x — xp)
k=1
= (z—1-i)(z+1+i)(z—1+1i)(z+1-1)
= (=1 +D((@+1)*+1)

—

*

=

(x): combining the first and third as well as the second and fourth factor,
using the third binomial formula

Partial fraction decomposition

ansatz, corresponding to the factorization:

1 _ar—1)+b clx+1)+d

M) = G T D@ P+ D) w1241 @i )Erl

multiplying by the common denominator ~-

1 = (alz—1D)+0)((z+1D*+1) +(cz+ 1) +d)((x—1)>+1)
(a+c)x® + (a+b—c+d)az? + (2b — 2d)x + (—2a + 2b + 2¢ + 2d)
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comparing the coefficients of 22, z, 22, and 1 —
a=-1/8,b=c=d=1/8,

and, hence,

(e —1) R 1 )

1
f(x):§<(:c_1)2+1+(:c—1)2+1 (z+1)2+1 ($+1)2+1()
1

Integration

Noting that a shift is irrelevant when integrating over (—oo, 00), i.e.,

/_Zu(x)dx:/::u(x—xo)dx,

the integrals of the first and third term cancel (opposite sign), and the inte-

< 1/8
grals of the second and fourth term both equal / QLI dz. Hence,

x < 1/8 1 1
/_OonQ/_OO xz{i—ldx: Z[arctana:]zzfoo = Z(7r/2_(_7r/2)) — %,

where the shorthand notation [u]*°,_ was used for obvious limits lim, 4 u(x).

Surprisingly simple!*

'Even simpler, and more elegant, is to use Complex Analysis — cf. MathTraining:
Problems and Solutions for Complex Analysis.
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6.8 Improper Integral of a Product of a Poly-
nomial with an Exponential Function

Compute / (z+ e *dz .
1

Resources: Integration by Parts, Improper Integral

Problem Variants

o0
[ | / 22e % dx
0

1/7:
check

©© 2
[ | / 22e ™ dx
0

check
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Solution

First, the integral is simplified with integration by parts. Then the limit
limy_ oo flb f is computed.

Integration by parts

applying the formula

b
/ w' = [uv]® — /u’v
a

with u(z) =x + 1 and v/'(z) = e ~»

b r=b
/ (z + el dz = [(:v +1) (—el—w)] 1 (et ) da
' SRR

= (0D +2) + [T = (<0 + e+ 2) 4 (—eT 4 1)

r=b .

z=1

Computation of the limit

Since limp_,o0 b"e™? = 0 for any n > 0,

b—o0

/b(x+1)elmdx — (=04+2)+(-0+1)=3.

Remark
In view of the simplicity of the limits, it is legitimate to shorten the presen-
tation by writing

/1 Tr=le+ 1)(—e' )] — / Tl (et e =24 [l o =3,

thus incorporating the limits directly in the integration process.
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6.9 Improper Integral of a Product of Sine/-
Cosine with an Exponential Function

(o)
Compute/ sinze?*dz .
0

Resources: Integration by Parts, Improper Integral

Problem Variants

[ | / sin(2x) e * dz
0

2/7
check

| / cos?(2z) e " dx
0

9/77:
check

[ / cos(3z)e " dx
0

1/77:
check
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Solution

integrating by parts,

with u(z) = sin’ x and v'(z) = ™%  ~
1 = / sin? xe > dx
0
v(x)
) /—’1 — - ' (x) .
= |sin’z (——e_%) } —/ 2sinx cosw (——e_%) dx
L 2 x=0 0 2
0
I 1 e o 1
= |sinzcosz | —=e > —/ (cos*z —sin’x) [ —=e 2" | dz
I 2 =0 0N ~ o\ 2
-~ =1-2sin’z
=0
1 0
= - / e 2dx — I
2 Jo
solving for I  ~~
1 > —2z 2x o
2] = — e “dx=|—-e =—, le,l=-
2 0 =0
Alternative solution
eix — iz
applying Euler’s formula, sinz = o no integration by parts is nec-
i

essary:

o0 1 /OO . .
2 —2x 2ix —2ix —2x
sin“ze ““dxr = — e —2+e e “dx
/0 (21)?2 Jo ( )

1 |:62iz2x eQixQx:| T=00

= —2x
1227 T,

1 1 . 1 1 (1+i 1+1—i 1
4 21 — 2 —21—2) 4\ 4 4 -8

An advertisement for Complex Analysis!
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6.10 Improper Integral with Square Roots over
0,1]

1
V 1
Compute/ T dx .
o VT

Resources: Improper Integral, Partial Fraction Decomposition, Elemen-
tary Rational Integrands

Problem Variants

1
| / < dz
o Vz+1

check

1
| / zV2x + 3dx
0

.77
check
YWVi+z
[ ] dx
o vV 1— s
.77
check
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Solution

The function b
ax
f(x) =p(x)y/r(r), r(z)= ot d

with a polynomial p is absolutely integrable over any finite interval since it
grows at most like C/\/z — x, at a pole z, of the linear rational function r.
With the substitution y* = r(z), [ f can be transformed to an integral of a
rational function (no longer involving square roots), which can be computed
using partial fraction decomposition.

Substitution

1
For the function f(x) = Tt

r=1/(y*—-1),2ydy = —1/22dx ~

r+1 / 1 /m 21>
dr = dy = S A— Y
/ V (y2—1)2 vs (P —1)2
_/ \ /

dz 9(y)

, the substitution 3?> = (v + 1)/2 <

(a sign change because of the interchange of the integration limits)

Partial fraction decomposition

ansatz for a function with two real double poles:

29/ a b c d

2 2 2 T - 2 T
y=1w+1)? (-1 y=-1 (+1)? y+l
The constants a, b, ¢, d can be determined by multiplying with the common

denominator and comparing the coefficients of y*. Simpler is the following
alternative.

mw:(

e multiplying by (y — 1)? and settingy =1 = a=1/2

o (y+1)y=—-1 = c¢c=1/2
The constants b and d can now be determined by evaluating at two points:

ey=0 = 0=1/2-b+1/2+d
e y=2 = 8/9=1/2+b+1/18+4d/3

solving the two equations ~» b=1/2,d=—1/2
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Integration
computing the integral

[Cotay= [T I IR IR,

NG} vi =172 y—-1 (y+12 y+1

using the antiderivatives

&:m\y—yd /L:_ 1
Y—1Y ’ (y—y0)2 Y=Y

as well as the formula Inu —Inv = In(u/v) ~

L TR N
g = |—-——7/———+zhhljy—1l|l—————=-In|y
3 2y—1) 2 20y +1) 2 y=3

- [— Y 11n'y_1]y:oo:o-(—\/§+11n\/§_1)

y+1

y=v3 2 V2+1

y2—1+2
1
= =V2- ;I3 -2v2) = V2 +In(1 + v2) ~ 22056

*)
/N\ The identity
1
—5 (3~ 2v/2) = In(1+v/2)
is puzzling at first, but easily confirmed. Multiplying by 2, and noting that
—Inu = In(1/u), 2Inu = Inw?, it is equivalent to

1
—— = (1+ V2 =3+2V?2,
3o\ )

2 2

valid in view of (u +v)(u —v) = u* — v
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6.11 Improper Integral with Square Roots over
an Infinite Interval

Compute / VT dz
4

2 —1

Resources: Improper Integral, Partial Fraction Decomposition, Elemen-
tary Rational Integrands

Problem Variants

- /fﬁ

check

- /om%

.77
check
/ 1
| / I:_ dx
0 z
.77
check
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Solution

After showing that f(z) = — a ; is absolutely integrable on [4, 00), |, 400 fis
x R

transformed into an integral of a rational function with the substitution
r=1y* < y=+x, dr=2ydy. (1)

Then, the partial fraction decomposition of the integrand is determined, and
the elementary terms are integrated, using tabulated antiderivatives.

Absolute integrability
1<2?/2forx >4 =

VT

2 —1

[f(2)] =

VT -3
< < 2473/2
x?—x?/2| ‘

3/2

—>  existence of [;*|f] since 27/ is integrable on [4, c0)

In general, a quotient of sums of fractional powers is absolutely integrable on
an interval D = [a, 00), if the largest exponent in the denominator is by more
than 1 larger than the largest exponent in the numerator (in the problem:
2>1/2+1), and the denominator has no zeros in D.

Substitution
applying the substitution (1), noting that xt =4 < y =2 ~»

Ve dx:/ i 2y dy
2

s r2—1 yt—1

9(y)

Partial fraction decomposition

factorization of the denominator of g:

y' 1= =D+ 1) =y - Dy + D +1)
corresponding ansatz:

29/ a b cy+d

I = T DD v gl

The constants a, b, ¢, d could be determined by multiplying by the denomi-
nator of g and comparing coefficients of y*. Simpler (and more elegant) are
the following considerations.
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2.1 1
multiplying by (y—1) and settingy =1 — a = AT D+ D =3

(y+1y=-1 = b=—3

1 1
settingy =0 — 0:—§—§+d,i.e.,d:1

e comparing the coefficient of * after multiplying by the denominator of

g = O:§—§+c,i.e.,c:0

summarizing:
1 1 1

g<y):2(y—1)_2(y+1)+y2+1

Integration

forming the antiderivative of g, using the tabulated integrals of the elemen-
tary terms, and combining the logarithms by applying the formula Inu —
Inv =In(u/v) ~o

1 —1
G(y) = §1n ‘m‘ + arctany + C'
integration, lim, ,; Int =0, In(1/u) = —lnu  ~
o 7 1
/ g = [G]Y = <0+ —) — (—111(1/3) +arctan2)
) 2 2
1
= g + %3 —arctan2 ~ 1.0129
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Chapter 7

Calculus Highlights
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7.1 Error Estimate for the Midpoint Rule

Determine the constant ¢ in the error estimate
1 1 n—1
/ e’ dr — — Ze(’”lm/” =cn 2 +0(n?)
0 "=

for the midpoint rule.

Resources: Riemann Integral
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Solution
exact integral:
1
S:/ e"do = [e"]"Z) = e — 1
0

approximation using the midpoint rule:

n—1 n_
formula for a geometric sum, Z ¢ = a , with g =el/"  ~»
qg—1
k=0
n—1 1/(2n) n—1
s = L S el 1/a/m = C Y g
"= (C——
el/(Qn) en/n -1 e—1

n el/n_1 n(el/(2n) _ efl/(2n)>

Taylor expansion of the denominator with ' = 1+t + ¢2/2 + 3/6 + O(t*),
t=1/(2n)and t = —1/(2n) ~

1 1 1 »
n(l to.t 32n)? + 6(2n)7 +0(n™")
NP S +O( ‘4)>—1+i‘2+0( )

on  22n)? ' 6(2ny U /) T T " "

1/(14+e)=1-e4+0(*) =

s-5.= (-1 o) = = (g ou)

1 + in—Q +O(n=3)

~»  constant ¢ = (e — 1)/24 ~ 0.0716
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7.2 Illustration of the Rapid Convergence of
the Midpoint Rule for Periodic Integrands
with Maple™

Approximate the Bessel integral

f
L [" : A F(3h — h/2)
Jo(x) == [ cos(nt — zsint)dt
T Jo
for n = 1, * = 1 with the midpoint (0,0) -
rule for 2,4,8,...,64 sampling points h
in 100-digit floating point arithmetic.

Compare with the exact value J;(1).

Resources: Riemann Integral
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Solution

# parameter n,x and number of digits
n :=1: x := 1: Digits := 100:

# Bessel integrand
f :=t -> cos(n*t-x*sin(t))/Pi
f =1t~ cos(nt — xsin(t))/7

# midpoint rule with 2,4,8,...,64 sampling points
# numerical computation with floating point arithmetic
for m from 1 to 6 do

h := Pi/2"m;
S := h¥sum(evalf (f(k*h-h/2)), k =1 .. 2°m);
print(S);

end do:

0.4593626849327842188921157625623308759050862399972858042991770262687068328251374530693296706994088502
0.4400520828215007499018578129032659892475057685789014483983050014421659463163010140393748144874186333
0.4400505857449335389138437701418267377018996647446125018211077065914649396877937643871822977684362097
0.4400505857449335159596822037189149131273723581689399721214421297459197341554642992152021394474568453
0.4400505857449335159596822037189149131273723019927652511367581717801382224780155479307965923811982541

0.4400505857449335159596822037189149131273723019927652511367581717801382224780155479307965923811982541

# comparison with the exact value of the Bessel function
evalf (BesselJ(1,1))

0.4400505857449335159596822037189149131273723019927652511367581717801382224780155479307965923811982541
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7.3 Weights of a Quadrature Formula

Determine the weights wy, of the approximation (Simpson’s rule)
h/2
(#)dz = h(w 1 f(—h/2) + wof(0) + wr f(h/2)) + O(),
—h/2

which integrates polynomials of degree < 3 exactly. Test the accuracy for
the integrals fol e” dr and fol vz dr by applying the approximation on an
increasing number of subintervals.

Resources: Riemann Integral
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Solution

Weights

exact integration of polynomials of degree <3 <=
h/2
/ 2 da = h(w_y (=h/2)F + wo 0% 4wy (h/2)¥)

for k=0,1,2,3

k=0 — h:h(w_1+wg—|—w1)
k=1 = 0=h(w_1(—h/2)+w (h/2)), le.w_1 =w
—

2 .
k=2 g(h/2)3 = h(w_1 (—h/2)* +w; (h/2)?)
substituting w_; = w; into the last equation — w4 =1/6
first equation = wy=1-—w_;—w; =2/3

symmetry of the weights = exactness for f(z) = 2 and all other
monomials with odd exponents

Alternative solution

The weights can also be determined as integrals of the quadratic Lagrange
polynomials py, corresponding to the points x_; = —h/2, o = 0, 1 = h/2.
They are defined by the interpolation conditions py(x¢) = dx . For example,

(x —z_q)(z — 1)
(zo — z_1)(wo — 21)

po(z) =

(po(xo) = 1, po(z+1) = 0). The corresponding weight is

l/h/2 (x —2_1)(x — 21) dxl/h/2 (x+h/2)(@—h/2) | 2

Wy = + T

h w2 (0+0/2)(0—h/2) 3

ny2 (To — 2 -1)(20 — 71) h

Approximation

The figure shows the weights if Simpson’s rule is applied on a partition of
the integration interval into subintervals of length h. Note, that adjacent
intervals share the weight h/6, resulting in a combined weight h/3.

1 2 1 2 1 2 1 2 1
hx & 35 3 3 3 3 3 3 &
0 h 1
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MATLAB® script for approximation of fol f with subinterval length h

% contribution from the subinterval endpoints
s = h * sum(f(0:h:1))/3;
= s-h*x(£(0)+£(1))/6; % correction at O and 1

)]

% contribution from the subinterval midpoints
s = s + 2%h*sum(f(h/2:h:1))/3

approximations for f(z) = exp(z) and f(x) = y/rand h =1,1/2,1/4,1/8,1/16:

f = 0(x) exp(x) f = 0(x) sqrt(x)
1.71886115 0.63807118
1.71831884 0.65652626
1.71828415 0.66307928
1.71828197 0.66539818
1.71828183 0.66621818

For y/x the approximation is much less accurate because of the singularity
of the derivatives at x = 0.
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7.4 Gauf Parameters with MATLAB®

Write a MATLAB® function which computes the points z), and the weights
wy, of the Gaufs approximation

/ Fa)de S wif (a)
0 k=1

of order n .

The points are the zeros of the nth orthogonal polynomial p(z) = 2™ +
Pzt 4+ -+ + p1, and the weights are determined from the exactness of the
formula for polynomials of degree < n', i.e.,

1 n 1
/ p(x)zdz =0, Z wyry ! = / e de, (=1,....n.
0 = 0

Resources: Integration with MATLAB®

!Because of the special choice of the points, the approximation is exact for polynomials
of degree < 2n; the reason for the high accuracy of the Gaufl formulas.

160



Solution

Linear system for the orthogonal polynomial p

fol(x"—l—pnx”_l +odp)atlde=0,0=1,...,n <=

n

k=1

'

1 .
k+;_1::h€,k n+g_~hé,n+1
with the Hilbert matrix

1/1 1/2 1/3
1/2 1/3 1/4
H=1 1/3 1/4 1/5

Linear system for the weights w

n -1 _ 1, r—1 —
D b Wy —fox de, (=1,...,n <+—
n
1
-1
E Ty Wk= 5 (=1,....n,
k=1 _Y ~—
=gk h[l

MATLAB® function

function [x,w] = GaussPar(n)

1 1
Z (/ A da:) PE = —/ ezt lde, (=1, ..
0 0
- S————

% Hilbert matrix and solution of the linear system for p

H = hilb(n+1); p = -H(1:n,1:n)\H(1:n,n+1);

% reordering p_k and appending the highest coefficient 1
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p = [1; p(end:-1:1)];

% zeros of the orthogonal polynomial
x = roots(p);

% Vandermonde matrix and solution of the linear system for w
V = (ones(n,1)*x’).~([0:n-1]’*ones(1,n)); w = V\H(1:n,1);
Striking simplicity of MATLAB® code!

points and weights for n = 5 (exactness up to degree 9)

1, T2, x3 ¢ 0.95308992296 0.76923465505 0.50000000000
wy, we,ws : 0.11846344252 0.23931433524 0.28444444444

symmetry = Ty =1—129, x5 =1 — 21 and wy = wq, ws = wy

% test case: int_0"1 exp(x) dx
% Gauss approximation (A) for n=5 and exact value (E)

[x,w] = GaussPar(b);
A = wxexp(x); E = exp(1)-1;

format long; [A; E]
1.718281828458391
1.718281828459046

12 correct digits!

Remark

Of course, the Gauls parameters are not computed in order to approximate
an integral. Instead, the points and weights are tabulated. Just a linear
transformation to the integration interval [a,b] is necessary. Usually, the
order is chosen not too large, and the accuracy is increased by subdividing
[a,b] (piecewise Gauft approximation).
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7.5 Romberg Extrapolation with MATLAB®

Denote by S(1,1),5(2,1),... the approximations for an integral with the
trapezoidal rule, generated by successively halving the stepsize:

b
[ £t =y (3@ + Fat )+ 50 1)+ 570)

with h; = h2'77 and h = h; the stepsize of the first approximation. For
smooth integrands f, the accuracy can be significantly improved with the
recursion

ARS(Gk—1) = S(j -1,k —1)

S(.]uk)_ 4k—1_1 ’ k:277.]

The last entry S(j,7) in the jth row of this triangular scheme is an approxi-
mation of order O(h%).

The triangular array

S(1,1)

¢
S(2,1) — S(2,2)

N\ N\
S(3,1) — S(3,2) — S(3,3)

is generated row by row. After halving the step size (hj_; — h;) and an
additional approximation S(j,1) of the trapezoidal rule, the extrapolated
values S(7,2),...5(j,7) are computed.

Write a MATLAB® function § = romberg(f,a,b,h,tol,steps) which im-
plements this so-called Romberg algorithm.

Test your program for
f(z) =sin(exp(z)), a=0,b=1,h=1/8,

and an estimated error < tol = 1.0e — 8.

Resources: Integration with MATLAB®
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Solution

Trapezoidal approximation

The figure shows the points and weights of two consecutive trapezoidal ap-

proximations S(j,1) and S(j+1,1). Since at the points a,a+ H,a+2H, . ..

all weights change by the same factor %, when refining the stepsize, the in-

tegrand has to be evaluated only at the points a + h,a+h+ H,a+ h+2H
when computing S(j + 1, 1):

S(j+1) = hjm (f(y+h)+f(a+h+H)+f(“+h+2H)+”')+%S(j’1)'

MATLAB® function

function S = romberg(f,a,b,h,tol,steps)

% trapezoidal rule with stepsize h
x = [a+h:h:b-h];
S(1,1) = hx(f(a)/2+sum(f(x))+£(b)/2);

% extrapolation steps
for j=2:steps
h = h/2;
% additional function values
% f(a:2%h:b) was already computed for S(j-1,1)
fx = f(a+h:2*xh:b-h);
% trapezoidal rule, using values of the last approximation
S(j,1) = hxsum(£fx)+S(j-1,1)/2;
for k=2:j
% extrapolation step
S(j,k) = (4~ (k-1)*3(j,k-1)-5(j-1,k-1))/(4~(k-1)-1);
end
if abs(S(j,j)-S(j,j-1))<=tol
S = 8(j,j); return % accuracy reached
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end
end
% no convergence after steps extrapolations
S = ’no convergence’

Test case

data
f = Q(x) sin(exp(x)), a=0, b=1, h=1/8, tol=1.0e-8, steps=16

~  matrix 9, generated by the algorithm with return value (bold) as ap-
proximation for fab f

0.871023590187

0.873974369576 0.874957962707

0.874711528008 0.874957247485 0.874957199804

0.874895783381 0.874957201839 0.874957198796 0.874957198780

Remark

Without extrapolation, 12 steps of the trapezoidal rule with 8-2!1+1 = 16385
function evaluations are required, compared to 8 - 23 + 1 = 65 function eval-
uations for the Romberg scheme. The operations to generate the triangular
scheme are negligible.

These considerable savings are possible only for smooth functions, i.e., func-
tions with continuous derivatives of very high order.

By contrast, if derivatives of low order cease to be continuous, the accuracy
deteriorates considerably. The function f(z) = sin(y/x) is a typical example.
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7.6 Antiderivative of the Logarithm of a Poly-
nomial

Determine

/ln(a:?’—a:Q—a:—i—l)da:,

assuming x > 1 .

Resources: Table of Elementary Integrals, Properties of the Integral
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Solution
Simplification

factoring the argument p(z) of the integrand f(z) = In(z® — 2® — 2 + 1:

-~

p(z))

dividing by the linear factor x — 1, corresponding to the apparent zero x; = 1
of p,

(23 —2? —2x +1 ) : (z—1)=22-1

-
0 —z +1
-z +1
0

~»  additional zeros (zeros of z*> — 1) xo = 1 (double zero), 3 = —1

resulting factorization:
p() = (x —21) (2 — 22) (7 — 23) = (x — 1)*(2 + 1)
applying the rules In(ab) =Ina +Inb, Ina®> = 2Ina  ~

f)=In((z —1)*(z+1)) =2In(zr — 1) + In(z + 1)

(. S

p(z)

Indefinite integral

applying the formula [Intdt =tInt —¢ with ¢ =2 — 1 and t = 2 + 1 (shifts
are irrelevant) ~» antiderivative

Flz) = 2((z—1)In(z—-1)—(z—-1)+(z+1)In(z+1)—(z+1)+C
= 3r+2z-Dhnz—-1)+(@+1)nz+1)+C

(C=C+1)
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7.7 Surface of a Car Tire

Determine the area of the surface, generated

by rotating the depicted curve, consisting of

two circular segments and a line segment,

about the vertical axis.

The grid width in the figure corresponds to one length unit.

Resources: Guldin’s Rules
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Solution

Radius r and angle ¢ of the circular segments

theorem of Pythagoras —

—_
P=d*+(r—h)? <<= 2rh=d*+h? h
d
substituting the concrete values  ~»
4
r=(d*+h2)/(2h) = (32 +12)/(2-1) =5 Y

and ¢ = arctan(d/(r — h)) = arctan(3/4)
Area A; of the surface part, generated by the straight line segment
shell of a cylinder with Radius R = 8 and height H = 4:

Ay =27RH = 647

Area A, of the surface part generated by one of the circular segments

application of Guldin’s rule for surfaces:

“The area of a surface, generated by rotating a curve C' about a noninter-
secting axis, is equal to the product of the length of C' and the length of the
circle, traversed by the center of gravity of C.”

length of each of the two circular segments (angle of the sector = 2¢):
L =2pr =2arctan(3/4) - 5 = 10 arctan(3/4)

symmetry =
distance of the center of gravity of a circular segment: d =5
length of the traversed circle: U = 27wd = 107w

>

Ay =UL = 107 - 10 arctan(3/4) = 1007 arctan(3/4)

area of the combined surface:

Ay + 2A, = 647 + 2007 arctan(3/4) ~ 605.39
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7.8 Improper Integral of a Quotient of a Log-
arithm and a Polynomial

Determine an antiderivative of f(z) = In(z* + 1)/(z + 1)* and compute
I3 f(@)da .

Resources: Improper Integral, Integration by Parts, Partial Fraction
Decomposition
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Solution

Integrating by parts, the logarithm in the numerator of the integrand

_ In(z®+1)
J(w) = (r+1)2

can be eliminated. A partial fraction decomposition expresses the resulting
rational function as a sum of elementary terms, which are easily integrated.

Antiderivative

integration by parts ~~

F(x) = /(:1: +1)2In(z® + 1) da
w_/a,_/
=:F1(z)
- e \ 2z
R R Rl R R =
N v —_———
partial fraction decomposition of —uv’ with the ansatz
2x a bxr +c
_— , — f—
9(w) = —u@)@) = T Tl T2
Itiplying with (z + 1) and setti 1 2(-1) 1
multiplying with (z and setting v = — ————=—-1=a
plying g (C1)2 11
subtracting the term —1/(z +1) ~
2z —1 20+ 22+ 1
b = (241 — — — 1
zhe=(z"+ )((33+1)(352+1) x+1) cr1 T

ie,b=c=1

resulting antiderivatives of the elementary terms:

G(x):—/u(x)v’(:v)dx :/ ! +—2 ! dx

Cr4+1 2241 2241

1
= —Inlz+1| —|—§ln(:c2—|—1) +arctanz + C

simplification with (1/2)Inp = In/p, Inp —Ing = Inp/q and addition of
Fi(z) = u(@)v(z) ~

In(z* + 1) x2+1
F(ﬂf) = _;1;—_{_1 + ln m + arc;a(n)x
=:F3(x

—_———
=:F5(x)



Integral over [0, 00)

e ln(z?+1) <Iln(zx+1)? =2In(x + 1), nz/z - 0 fiir x - 00 =
2?+1 1+1/2?
= —1f — —  lim,_, F =
* (x+1)2 14+2/x+1/z? orE o iy —yo0 F3(2)

Inv1=0

e lim, . arctanx = /2
F3(1‘)

definition of an improper integral, substitution of the limits, and Fj(0) = 0,
k=1,2,3 ~»

/Ooo f@)de = lim [ f(z)de = lim F(r) — F(0) = 7/2 — 0 = /2

r—00 0 T—00
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7.9 Antiderivative and Integral of a Trigono-
metric Expression

Determine an antiderivative of
cos?(2t) sin” t

and compute the integral over [0, 27] .

Resources: Table of Elementary Integrals
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Solution

Conversion to a complex trigonometric polynomial

applying the formulas of Euler-Moivre,

eiap + eficp ) eiip _ efigo
cosp = ———— -
() 2 (9) 2i

to f(t) = cos?(2t)sin®t  ~

(eQit + e—2it)2(eit _ e—it)2

1) = 22(2i)2

expanding, with z = e  ~

ft) = (2 + 272 (2 = 271)? B (P +24+ 27 (=22 +2-272)
n 16 a 16
—20 4224 32244322490, 6

16

Antiderivative

converting back to a real trigonometric polynomial, using (C) in the reverse
direction, i.e., replacing (z* + 27%)/2 by cos(kt) ~

1 3 1 1
=-_= ~ cos(4t) — =
(@) 1R cos(2t) + 1 cos(4t) 3 cos(6t)
1
/ cos(kt) dt = % sin(kt) + C ~~  antiderivative

1.3 1 1
F(t) — Zt — E 51n(2t) + E sm(4t) — 4_8 sm(6t)

Integral
fOZW cos(kt)dt =0 for k>0 —

2w 271'1 T
/0 f—/o Tai=T
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7.10 Integrals of Bernstein Polynomials

The figure shows the Bernstein polynomials?

be(z) = (Z) (1—2)"*2% 0<k<n,

for n = 6.

0.8 |
0.6 |
0.4

0.2t

0
0 0.5 1

1
Compute / bp(x)dx.
0

Resources: Integration by Parts, Fundamental Theorem of Calculus

2These polynomials play a fundamental role in Computer Aided Design, as was first
realized by P. Bézier (Renault) and P. de Casteljau (Citroén); cf. K. Hollig, J. Horner:
Approximation and Modeling with B-Splines, STAM, OT132, 2013, for an introduction to
the basic modeling techniques.
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Solution
The integral of
(e = () - ot

over [0, 1] can be computed using integration by parts:

/Olb;g(x)dx: (Z) /01 (1—a)* ot =

u(z) v’ (z)

(o 25170 () [ b 22

k+1
u(x) U("x) u'(z) (o)

For 0 < k < n, the first term on the right side vanishes, and, since

n\n—-k n!(n — k) B n! [ n
kE)k+1 (m—k)KE+1) h—-Fk-DI(k+D! \k+1)’
the second term equals

n 1 1
(1 —z)" D gh qy = / br. (x)dz.
(k + 1) /0 0o

Hence, starting with £ = 0, the integrals of all Bernstein polynomials are

equal:
1 1 1
o= ==
0 0 0

where the last integral is easily computed:

1 1 1
/ br(x)de = / " dx = :
0 0 n+1
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7.11 Taylor Expansion and Integration by Parts
Prove the identity®
1 o0
/ 2¥dr=85= Z(—l)”n_n,
0 n=1
and compute the integral with an error less than 0.001.

Resources: Integration by Parts, Table of Elementary Integrals

oo n

3discovered 1697 by Bernoulli and, together with the variant fol xde =) n"
referred to as ,Sophomore’s Dream* (cf. J. Borwein, D. Bailey, R. Girgensohn: FEzperi-
mentation in Mathematics: Computational Path to Discovery, CRC Press (2004))
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Solution

Equivalence of the integral and the sum

Taylor expansion of the exponential function  ~~

o0

1
1
¥ =" = Z o (rlnzx)"

n=0
In order to integrate the infinite series term by term, first, [, = fol 2" (Inx)* dx
is computed:
integration by parts with «/(z) = 2" and v(z) =In*z  ~

n+1 =1 1 ntl 1
Ly = [ $+ N (lnx)k] —/ x—i— 1 k(lnz)"1= dz
u(x) u(z) v’ (x)
ko[t k
= 00— "(lnz)tde = ——— 1,
n~|—1/0w(nx) ’ n+1 "™t
where the first term, [...]*Z}, is equal to 0 since x In z vanishes at z = 0 and

r=1

. . . 1
recursive application with I, o = fo x"dr = n+r1 =

—1
Inn - - n [nn—l =\~ n _n ]nn—Q
’ n+1 ’ n—+1 n+1 '
n n—1 1 1 " n!
N _ . = (-1
n+1 n+1 n+1 n+1 (n+1)
—_——

In,()

substituting into the Taylor expansion  ~~

1 0 1 > (_1)n 0 (_l)nfl
:Ed — _I’I"LTZ: _—_— —_—
/0 o ;”! | OV P

n=0

Error estimate

Since the summands alternate in sign and converge to 0, the truncation error
of a finite sum can be bounded by the absolute value of the first summand
omitted (Leibniz criterion):




N =4 ~- approximation

1 1 1

S~S=1—-—+—2—-—=0.T7831...

4 27 256

and | [} 2* dz — Sy < 57° = 1/3125 < 0.001

179



7.12 Area Bounded by the Square Root of a

Parabola
6
Compute the depicted area, which is bounded
by the graph of the function 4
S
flx) =V4x?2 + 8z —5 2
for 1/2 <z <2. 00 1 5 3

Resources: Special Substitutions

180



Solution

The area A is equal to the integral

2
f, flx)=+v4z?+8x —5.
/2

1

With a linear substitution, the integrand is first transformed to the standard
form y/y? — 1 and then computed with the substitution

= cosh z, dy =sinhzdz, =z =arcoshy =In(y+ v/y>—1). (1)

Transformation to standard form

completing the square  ~~

20 + 2\
4x2+8x—5:(2x+2)2—9:9<( x; ) —1>

linear substitution ~~
B 2+ 2

2
y=—3 ,dy:§dx, r=12cy=1Lr=2+y=2

and

2 2
A:/ \/4x2+8:1:—5d:c:/ 3\/y2—1gdy
1 1

/2

Computation of the Integral

Applying the substitution (1), the integration limits y; = 1 and yp = 2
become
2 =I(14+0)=0, 2z =Imn2+V3),

and, noting that cosh? z — 1 = sinh? 2,

9 In(24++/3) 91 1 z=In(2+/3)
A:—/ sinh?2dz = = |=sinhzcoshz — —z
0 212 2

2

2=0

z=In(2++3) =arcosh2 = coshz =2, sinhz =22 -1 and

A = g((%ﬂ-z—%ln(uﬁ)) —0)

9

9
= SV3- 2+ V3) ~ 4.8311
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7.13 Construction of a 1000-Liter Barrel

The depicted barrel has a height of H =
1.25m, and the smallest and the largest (mid-
dle) radii  and R differ by 5cm. Determine
R for a volume V of 1000 liter (1m?3) with
Kepler’s rule®

2 1
VarH (R4 -r? ) .
(3 3
Compare with the exact volume for a parabola
as profile. Moreover, compute the curved sur-

face part of the barrel.

%identical to Simpson’s rule for numerical integra-
tion

Resources:
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Solution

Radius

# Kepler’s approximation
V_Kepler := (H,R,r) -> Pi*H*(2%R~2/3+r"~2/3)

7 H-(2-R*+r?)
3

V' _Kepler := (H,R,1) —

# assignment of the given values (56 cm = 1/20 m)
# solution of the quadratic equation V_Kepler = 1
H :=1.25: r := R-1/20: R := solve(V_Kepler(H,R,r)=1,R)

R :=0.5207, —0.4874
RJ[1] contains the relevant positive solution.
Exact volume
profile curve: parabola p with maximum at h = H/2 with value R and value

r=R—1/20at h=0and h=H

p :=h -> R[1]-(2%h/H-1)"2/20;
(2-h/H —1)?
20

formula for the volume of a solid of revolution, Vegaxe = 7 fOH p(h)2dh  ~

p:=h— R[1] —

V_exakt := Pixint(p(h)~2,h=0..H)

V _exakt = 0.9987
error Vikepler — Vexakt = 0.0013 (= 1.3 liter), less than 1%

Surface

formula for a surface of revolution, S = 27 fOH p(h)\/1+p/(R)2dh  ~

S := 2«Pixint(p(h)*sqrt(1+diff(p(h),h)~2),h=0..H)

S = 3.9754
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7.14 Differentiation of Integrals

Differentiate the following integrals with respect to = for > 0.

VT ) 1 1/z s 2
a) / e dt b) / In(z? + ¢*) dt c) / sm(;ct ) dt
0 0 0

Resources: Fundamental Theorem of Calculus

Problem Variants

check

check

check
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Solution

Differentiation with respect to an integration limit

fundamental theorem of calculus and chain rule —

/ " fyat = P) - F@), f=F

S (F(y(@) ~ Fla) = Py @) = fy()y (@)
application to y(z) = /7, f(t) =~

d [v* . 2 d
- dt = Vo) — \/x =
dz J, ¢ ¢ d.’J&\/E 2\/x

Differentiation of the integrand

differentiating under the integral — ~-

d [? Y Of(t,x)
a/af(t,x)dt:/a o dt

application with f(z,t) = In(x® +?) ~

d [! o2 102
— [ In(2*+¢*)dt = / —$dt:/ ———dt
dz J, 0 T2+t 0o T1+(t/x)?

= [2arctan(t/z)]\—, = 2arctan(1/z)

Differentiation of the integration limit and the integrand

chain rule for partial derivatives:

%g(u(:ﬁ), v(z)) = Oug(u(zx),v(x))u'(x) + dpg(u(x), v(z))v' (z)

application with g(u,v) = [ f(t,v)dt and u(z) = 1/z, v(z) = z, f(t,v) =
sin(vt?)/t, combining the previous examples — ~»

d Y- sin () dt = M (_i> + /1/9015008(1521’) dt
0

dz J, t 1/x x?
__sin(l/z) N sin(t22) =" __sin(l/x)
B x 2r |, B 2z
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7.15 Center of Gravity of an Icecream Cone

Determine the center of gravity of the ice-
cream cone with the depicted cross section,
neglecting variations in the content, i.e., as-
suming constant density.

Resources: Center of Gravity of a Solid of Revolution
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Solution

application of the formula

b b
. :77/ zr(z)zdz/volS, VOIS:W/ r(z)?dz

for the z-component of the center of gravity of a solid of revolution S with
radius function 7(z), a < 2 <b

Radius function

For the semicircle, bounding the top part of the cross section, the theorem
of Pythagoras implies

Z24r(2)? =24 de,r(z)=vV4—22,0<2<2.
For the straight line, bounding the bottom part,

6
r(z)zz—g ,—6<2<0.

Volume

applying the formulas for the volume of a hemisphere H (radius 2) and a
cone C' (radius 2, height 6) ~

2 1 16 40
VOlSZVOlH—FVOlCZ§7T23+§7T22-6:?7T+87T:§7T

confirmation of the formulas with the formula for the volume of a solid of
revolution:

e hemisphere

2 37 2=2
1
VOlHIﬂ'/<4—22)dZ:7T 4r— = = 8—§ :—67T v
0 3. 3 3

® cone
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Center of gravity

b
contributions to ¢, = 7r/ zr(2)? dz:
a

e hemisphere

® cone

0 2 6 2 4 3
z+6 z z 2z
co 7T/6Z( 3 ) z W/O(Z )9 z ﬂ{% 9|

= 7(36—48) = —127

adding the contributions and dividing by the volume  ~~

cyg +cc  4An— 12w 3

“ T 7WlS T (40/3y7 5
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7.16 Existence of an Integral over [0, cc) with
a Singularity at 1

Prove the existence of the improper integral
°° sin
/ (m2) do.
0 Inx

Resources: Improper Integral, Majorant
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Solution
First, it is shown that integrand

sin(mx)

fx) =

Inz

is continuous by computing the limits for + — 0 and + — 1. Hence, the
integral over any bounded interval exists. Then, the existence of the limit of
feb f(x)dx for b — oo is proved®.

Continuity of the integrand

e © — 0: sin(rz) — 0 and Inx — —oo for x — 0
= sin(mz)/lnz — 0

e r — 1: application of the rule of L’Hépital,

i @_ im f,<x) i a) = Q) =
olclg(lz g(x) _iﬁa g/(x)’ ff(a) =g(a) =0,

with f(x) = sin(nz), g(z) =lnx  ~

: . mcos(mx)
lim =lim——+>=—7
=1 Ingx r—1 1/x

sin(mx)

Existence of the integral over the unbounded interval

integrating twice by parts ~-

u(z) e u(z) V' (z)
W@ @) 0 ) e ——
N cos(mz) 1 qa=b cos(mz) 1
sin(rz) (1/Inz) de = [—— —] - | - ———— | dz
o R 7  Inzli= J, T rln®x

I, (b)

i I R In?z 421
L(b) - {Sm(;rx) } +/ sm(;mj) (_ n“xr+ nx) dz

™ zrln’z s 22In* x
) 12(0) C Is(b) ’
For b — oo,
L) — _COS(?TG)’ L(b) - _Sin(;re)
T 2e

4Instead of e, any lower limit could be used. Choosing e just makes the computations
and estimates more convenient.
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and lim,_,, I3(b) also exists, since the absolute value of the integrand is
majorized by
1 142

A, =
w22 n"x

3
ot T >e.
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7.17 Integral of a Product of a Polynomial with
an Exponential Function over R
Compute N
/ (22 + 3z) e T2 4y

using that [* e ¥ dt = /7.

Resources: Improper Integral, Substitution, Integration by Parts
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Solution

By completing the square in the exponent of the exponential function, fol-
lowed by a linear substitution, the integral

/ (1:2 + 3z) pltdz—222 ..

[e.9]

is transformed into a sum of integrals ffooo tF ¢=** d¢, which can be computed
with integration by parts.

Simplification by Substitution

completing the square,
2
1+4x—2x2:—<\/§x—\/§> +3
~  substitution

t=x/§x—x/§,x=t/x/§+1, dt = V2dx,

which simplifies the integral:

I = / (2% + 3z) 472" g

o0

> /1 2 3 2,5 1
= Pttt 14+ ——=t+3) e " =dt
[ o 5

00 2 5 2
_ e3/ <§t2+§t+2\/§> e "dt = I + I + I3

Computation of the three integrals

] _[3263'2\/§’\/7_T

e [, = 0 because of symmetry (integral of an odd function over a sym-
metric interval)

e integration by parts with u = ¢, v/ = te™*  ~»

4

-3 = —t2
—e L = / t te " dt
2 oo T
\/_ u(t) v'(t)
=0

- N

= (—e_;/Q) AN (—e/2)dt = V7 /2,
[t T}—oo /OO ?(,t-)/ t
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2
ie., I, = \/?_63\/;

sum of the integrals:

1
! eV ~ 106.9873

1
1:11+I2+13=geS\/iﬁ+o+2.e3\/§\/%:§
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7.18 Density Functions and Expected Values

For the functions

a) f(zr) = ce ™™/ b) f(z)=ce™ ¢) f(z) =

(+1)°

determine the constant ¢, so that f(x) is a density function on the interval
[0,00), i.e., [;°f = 1. Moreover, compute the expected value [;°zf(z)daz
in each case.

For part a) use that [ e " dy = \/7/2.

Resources: Improper Integral, Integration by Parts
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Solution
) () = ce !
substituting x = 2y with de =2dy  ~

1;/ f(ac)d:v:c/ eV 2dy = c /7,
0 0

Le,c=1/\/m
4
dw

(—2 e_x2/4> = xe_x2/4, lim, o e =0 expected value

1 /°° 424 { 2 $2/4} e 2 2
— Te dr = |——=e =——0—(-1)=—=~1.1284
0 YA P R NG

b) flz)=e"™

1=e¢ /Ooo e dr = c [—%e—?’f] L ¢(0—(—1/3)) =¢/3

=0
= c=3

integration by parts ~»  expected value

%0 1 w=o0 %0 1
/ r e dr = [ 3x (——e_?’w )] — / 3 (——e_?’x) dz
0 f \i,_/ z=0 0 / \i,_/

o 1 SRR
=0 +/ e 3 dy = [—— e_Sx} ==
0 3 =0 3

c) fl@)=clz+1)7"

/“&_ R L
o (+1p | 4x+1)*,_, 4 B

expected value

I e R e R e
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7.19 Improper Integral and Geometric Series

Compute the (partially) depicted area, which is bounded by the graphs of
the functions

f(z) = e *sin(nz), g(x) = e */* cos(rx)

with z € [1/4, 00) .

1r

05

05 r

p 1 1 1 | |
0 2 4 6 8 10

Resources: Improper Integral, Integration by Parts
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Solution

It is shown that the subareas Ay, k =0,1,..., with 1/4+k <ax <5/4+k
decrease by a constant factor. Hence, it suffices to compute Ay, and to apply
the formula for a geometric series.

Decay of the areas

The subsets are separated by the intersections of the graphs of f and g which
occur at the points where cos(rz) = sin(nz), i.e., for

ap=1/4+k k=01,....

comparing the vertical width of adjacent sets at
corresponding points =~~~

a = e “*|sin(rz) — cos(mx)], A
b = e @/ sin(rx + 1) — cos(ma 4 )| \I/

Hence, since cos(t+7m) = — cos(t) and sin(t+7) = | \
— sin(?), x r+1
b=cYa,

and the sub-ares A, decrease by a factor ¢ = e™/4.

- 1
applying the formula Z ¢ = ] for a geometric series ~»  total area
k=0
2 Ao
A=A+ A+ Ay =Ao+ Aog+ A1+ = — 7 (1)

Total Area
integrating by parts  ~-
5/4
Ay = / e /% (sin(rx) — cos(wx)) do =
1

/4 ) NS ~~ g

[(—4 e~ %/%) (sin(rz) — cos(7m))] . /15/4(—4 e~ (7 cos(mz) + msin(mz)) da

— r=1/4 /4 ~~

u(x) v’ (x)

Since sin(rz) = cos(mx) for x = 1/4,5/4, the first term equals 0.
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integrating the second term by parts  ~-

5/4
Ay = / (4e=/*) (7 cos(mx) + msin(rx)) dz =
1/4 N=—~— —~ v

u () v(z)

[(—16e /") (m(cos(rz) + sin(mx)))]

x=5/4
z=1/4

5/4
/1/4 (—16 e*:r/4)(71'2(_ sin(mx) 4 cos(mx))) dz

(. J

~
1672 Ao

Since — cos(5m/4) = —sin(5m/4) = cos(n/4) = sin(n/4) = v/2/2, the first
term equals 16mv/2 (e 7216 + e_l/m), and solving for Ay ~

e 1672 (675/16 _}_671/16)
0= 1+ 1672

substituting into (1) ~»

B 167v/2 (e7%/16 4 ¢~1/16)

A= ~ 3.3792
(1+ 1672)(1 — e 1/4)
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Chapter 8

Lexicon
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8.1 Elementary Integrals

Riemann Integral

b b
[rwa= [ = S e an
N

shorthand notation
with Azy, = x — 251, |A| = maxy, Az, & € (vp_1,xk)

canonical choice of the partition A and the points &, ~» midpoint rule

/bfzhnz:f(a—l—kh—f—h/Q), h=((b—-a)/n

Properties of the Integral

e linearity

/abf+g=/abf+/abg, /absf=s/abf

b b
JREIAL
e scaling and translation

/abf(px+Q) dv = - /ppb+qf(y) dy

p a+q

e cstimate

Mean Value Theorem

b b
/af\g//:f(c)/ag for some ¢ € (a, b)
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Fundamental Theorem of Calculus

If F' is an antiderivative of the function f, i.e., if

then

ﬂw:/ﬂ@w — f=F,

/fzwﬁzF@—F@.

Table of Elementary Integrals

1 1
x) || 2", n# -1 — exp x Inz
f(@) || 2", n# ” Xp T
In—i—l
F(x) ] In|z| exp x xlnz —x | arctanx
f(z) coS T sin x tan x cosh sinh
F(z) sin x —cosz | —In(cosz) | sinhz coshx

Trigonometric Polynomials

ikx _ C_kik:c
/che dr = c+ cox + Z ike

0 [k|<n

|k|<n

p(z)

definite integral over a periodicity interval:

a+2m ] a+2m
/ "dr =0Vk#£0 = / p = 2mcy

Integration with Maple™

# f: expression, containing the variable x

# antiderivative

int (f,x)
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# definite integral (symbolic)
int(f,x=a..b)

# definite integral (numeric)

Digits:=n  # optional specification of significant digits
int(f,x=a..b, ’numeric’)

/N Resist the temptation to use these commands before you have solved
the problem without any (computer) assistance!

Integration with MATLAB®
% numeric
integral(f,a,b,’RelTol’,tol_r,’AbsTol’,tol_a)

% example, using default tolerances
f = @(x) exp(-x), integral(f,0,Inf)

% symbolic, antiderivative and definite integral
syms x, int(f,x), int(f,x,a,b)

% example:
syms x, int(sin(x),x), int(sin(x),x,0,pi)
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8.2 Rational Integrands

Elementary Rational Integrands

e simple poles

dx 1
= -1
/aa:er an|x+b/a\
clx—a)+d c . d r—a
/mdx = g ((z —a)” +b%) + arctan | —

e multiple poles

1
—n—1 —-n
[
/cp+d ¢ N dp 2n—1/
gt () 2nq™  2b2ngn 2b2
with p(z) =z — a, q(z) = (v — a)? + b*

(%) permits a recursive computation
special cases

I
|
[
i

—

T 1 dx T dx
/(m2+1)2dx:_2(x2+1)’ /(x2—|—1)2 :2($2+1)+/2(m2+1)

transformation of the denominator ((x — a)? + b*)"*! to the standard
form (y* + 1)"*! with the substitution x — a = by

Partial Fraction Decomposition
r = p/q, degreep = m, degreeq =n

e simple poles z, i.e., ¢(x) = qo(z — 21) - - (x — z,):

_|._
1 T — 2k
with a polynomial f of degree m —n (f(z) = 0 if m < n), which is the

remainder if p is divided by ¢, and with

cr = g}gl;k(x — ) r(z) = o]l :ffi - %)
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special case

ar +b ~ (az +0)/(21 — 22) N (azo +b)/(22 — 21)

(x — 21)(z — 29) T —2 T — 29

e multiplicity my of zj:

r(z) = fla)+ > Z 5 C_’fﬂzk (1)

k j=1

The coefficients of the polynomial f and the constants ¢ ; can be de-
termined by comparing the coefficients of x¢ after multiplying with the
common denominator.

Real Partial Fraction Decomposition
For a real rational function with complex conjugate poles uy + ivy, alterna-
tively to (1), the summands (¢} /(x — uy, — ivp)? + ¢, /(€ — ug + ivg)?) are
replaced by a sum of the terms

ko(I — Uk> + €k,j

=1, my.
(v — w2+ 02y 7 s

Maple™
convert (f, ’parfrac’,’complex’)
convert (f,’parfrac’) (real version)
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8.3 Integration by Parts

Integration by Parts

[ro=ts- [ 14 /abf’gz[fgl’;—/abfg’

[fg]? = 0, if fg vanishes at a and b, or, if the product is periodic with period
(b—a).

Typical Applications

o g(x) = 2%, f(z) = e® cosz, sinz ~»  successive reduction of the

polynomial degree

e g(x) = "z, f(z) = 2* ~  elimination of the logarithm after
repeated integration by parts
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8.4 Substitution

Substitution

r)+C = /f da:—/f F(y)+C

b g(b)
H(b) — H(a) = / (fog)d = / = F0) ~ Flol)

or

application in both directions:

e An antiderivative H for integrands of the form h = (f og)g’ is obtained
by inserting y = g(z) in an antiderivative F' of f: H(z) = F(y(x)).

e An antiderivative for f can be constructed by substituting y = g(x) and
replacing dy by ¢/(x)dz, then determining an antiderivative H(z) of
h(z) = f(g(x))¢'(x), and finally reversing the substitution, i.e., F(y) =
H(g™(y))-

Definite integrals are handled analogously.

Special Substitutions

ri@,Vprtaq) — 7y
=+/pxr +q, de =2y/pdy

o r(z,zt/m 2 = (y)

r=y°, de=sy"'dy, s: leastcommon multipleofmandn
o r(x,v/x? —a?) — 7(coshy,sinhy) or 7(expy)

x = acoshy, dr = a sinhydy, Va2 — a®? = asinhy

r(z,vVz? —a?) — F(cosy,siny)

r =a/cosy, dr = asiny/cos’ydy, Va2 —a? = atany
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o r(x,va?—1x2%) — 7(cosy,siny)
x =asiny, dr = acosydy, va? — x?> = acosy
o r(z,Va®>+2%) — 7(cosy,siny)

r = atany, dv = a/ cos® ydy, Va2 + 22 = a/ cosy

r(z,va?+2?) — 7(coshy,sinhy) or F(expy)

x = asinhy, dr = acoshydy, vVa? + 22 = acoshy

e r(cosx,sinx) — T(y)

1— 1?2 2y

Yy .
— sinz =
1492 1492

y = tan(x/2), dz = 2dy/(1 +4?), cosz =

Too many formulas? No, this is just the tip of the iceberg! Determining
indefinite integrals can require rather ingenious manipulations.

208



8.5 Solids of Revolution

Volume and Surface of a Solid of Revolution

- (b, (b
PRC)
h(r)

(a,(a) yre

rotation about the z-axis with radius r(z), a < x < b (cross section of the
solid depicted on the right)

b
e Volume: 7T/ r(r)*dax

b
e Surface: 27r/ r(z)y/14r'(z)?de

volume of a solid bounded by an interior and an exterior radius function r_
and 7

w/ab r(@)? — 7 () da

alternative computation of the volume for a monoton radius function:

27r/ rh(r)dr = n(b—a)r?, + 27r/ rh(r)dr,
0

Tmin

with h(r) the height of the cylinder with radius r contained in the solid
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Guldin’s Rules

O

e The surface of a solid of revolution is equal to the product of the length
of the generating curve C' (black) and the length of the circle (blue),
traversed by the center of gravity of C' under the rotation about the
symmetry axis (green).

e The volume of a solid of revolution is equal to the product of the area of
the generating set A (gray) and the length of the circle (blue), traversed
by the center of gravity of A under the rotation about the symmetry
axis (green).

In both cases, the radius of the circle equals the distance of the center of
gravity from the rotation axis.

VAN Note that, in general, the centers of gravity of C' and A will not coincide.

Center of Gravity of a Solid of Revolution
radius function r(x), a < x < b, and constant density ~» C = (¢,,0,0)

with
b b
cx:/ :cr(:c)Qda:// r(x)* da
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8.6 Improper Integrals

Improper Integral

definite integral fab f with unbounded integration interval or with |f(x)| — oo
for x — a* or/and x — b~

b D d
/ f = lim / f+ lim / f, pe€(a,b)
a c—at /. d—b— »

Sufficient for the existence of the limits and, hence, for the existence of the
improper integral, is that f is absolutely integrable, i.e.,

d
/ |f| < constV]c,d] C (a,b).

Majorant

|f(z)| < lg(x)|, gabsolutelyintegrable = f absolutely integrable
commonly used majorants:

o ca’,r>—1for [ f(x)dx

o ca’,r < —1for [F f(z)dx

Minorant

0 < g(z) <|f(z)], gnotintegrable =  fnot absolutely integrable
(=  not integrable, if f does not change sign)

commonly used minorants:
o ca’,r < —1for [ f(z)da

e ca’,r>—1for [ f(z)dx
Gamma Function

[(z) = / t"le7tdt, € (0,00)
0
functional equation: I'(z + 1) = z['(z), I'(n + 1) = n!
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