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Preface

The problem set of the book covers all basic topics of a first course on dif-
ferential equations. It can be used to practice for exams, to facilitate the
completion of homework assignments, and to review course material. Inter-
active variants to model problems with detailed solutions permit the student
reader to test his comprehension of the relevant techniques. In addition to
the collection of problems, a small mathematics lexicon contains brief de-
scriptions of the relevant theorems, methods, and definitions.

There exists also a sportive aspect of mathematics - challenging problems
requiring ideas beyond the standard techniques. The problems in the chapter
Calculus Highlights are perhaps too difficult for undergraduates. They are
included to initiate or strengthen fascination for mathematics. It is definitely
not a mistake to practice substantially harder than necessary . . .!

The book is partially translated from

Aufgaben und Lösungen zur Höheren Mathematik 3

by Jörg Hörner and the author. It supplements this textbook by providing
detailed solutions to tests for the chapters on Differential Equations. More-
over, the book includes additional problems, in particular problem variants
for the topics of the tests.

The author wishes the readers success in their studies and hopes that math-
ematics will become one of their favorite subjects!

Klaus Höllig
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Introduction

The book contains problems with detailed solutions, problem variants with
interactive result verification, and a mathematics lexicon for the principal
topics which are usually subject of a first course on differential equations:

• First Order Differential Equations,

• Second Order Differential Equations,

• Systems of Differential Equations,

• Laplace Transforms.

The problem set can be used to practice for exams, to facilitate the comple-
tion of homework assignments, and to deepen the comprehension of course
material. How is this accomplished most effectively? Remembering his own
student days, the author makes the following recommendations to a student
reader.

Consider, as an example, a problem from the chapter on First Order Differ-
ential Equations:

1.9 Linear Substitution
Determine the solution y(x) of the initial value problem

y′ =
1

x+ y
− 1, y(1) = 1 .

Resources: Linear Substitution

Before looking at the solution of the problem, review the relevant theory
or methods (resources). Clicking on the link Linear Substitution leads to
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the following brief description of the solution technique from the Lexicon in
chapter 6.

Linear Substitution

y′ = f(a+ bx+ cy)
z=a+bx+cy−→ z′

b+ cf(z)
= 1 (separable)

If the right-hand side of the differential equation is a function f of a linear
expression z = a + bx + cy (a = 0, b = c = 1 in the sample problem), z
should be introduced as a new dependent variable. This results in a separable
differential equation which can be solved more easily.

Try to solve the problem with these instructions. Then compare your com-
putations with the solution given in the book:

Solution

Substitution

replacing the linear expression x+ y(x) by z(x) ⇝

y′(x) =
1

x+ y(x)
− 1 ⇐⇒ z′ − 1 =

1

z
− 1 ⇐⇒ zz′ = 1 (1)

Solution of the separable differential equation

integrating (1), using that
d
dx

g(z(x)) = g′(z(x))z′(x) with g′(z) = z, and
undoing the substitution ⇝

z2/2 = x+ c ⇐⇒ (x+ y)2 = 2x+ 2c

Initial value

y(1) = 1 =⇒ (1 + 1)2 = 2 + 2c, i.e. c = 1 and hence

y(x) =
√
2x+ 2− x

The solutions are written in a keyword-like style, as you would employ when
you comment your solutions in an exam or for homework problems. For
example, the phrase “integrating (1) ⇝ . . .” stands for “By integrating
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equation (1) we obtain . . .”. Other typical phrases are “simplifying ⇝
. . .”, “chain rule =⇒ . . .”, “characteristic polynomial: . . .”.

There is just as much detail included as is necessary for the mathematical
arguments. Complete sentences are rarely used.

Following common practice, the dependence on a variable is often omitted.
For example,

y′ = f(x, y) = x+ sin y

is more “readable” than the formally correct equation

y′(x) = f(x, y(x)) = x+ sin(y(x)) .

Unlike a computer, a human can deal with a slighty incorrect syntax.

To gain more practice with the solution technique, it is highly recommended
to solve some (preferably all . . .) of the problem variants, following the prin-
cipal model problem for each topic. For Linear Substitution the variants
are:

Problem Variants

■ y′ = (1− 2x+ 3y)2 + 2/3, y(1) = 1/3

y(0) = −?.??:

check

■ y′ = exp(2x+ y) + 2, y(1) = 2

y(0) =?.??:

check

■ y′ =
x

x+ 2y
− 1

2
, y(0) = 1

y(1) =?.??:

check

You can check your solution by typing your answer in the field adjacent to
the check - box, replacing every question mark by a character (digit or
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letter). Convert your result to a decimal, truncated to the number of digits
indicated. For example,

2/3 → 0.6666 . . .
?.??−→ 0.66, answer : 066 .

Note that the period is omitted; only the characters corresponding to the
question marks are typed.

The solutions for the three problem variants are

(1) y(x) = (2x− 1)/3, y(0) = −1/3 = −0.3333 . . .,

(2) y(x) = 2x+ lnx, y(2) = 4.6931 . . .,

(3) y(x) =
√

x2/2 + 1− x/2, y(1) = 0.7247 . . ..

Hence, the correct input is

(1) −?.?? → 033 (2) ?.?? → 469 (3) ?.?? → 072 .

As mentioned in the beginning, the problem set can also assist you in com-
pleting homework assignments. Just look for a similar problem and study
its solution. Similarly, for methods and examples presented in class, practice
with the relevant problems.

The above remarks pertain to the first four chapters which exclusively dis-
cuss the solution of standard problems. Usually, such problems constitute the
major portion of an exam or homework assignment. Hence, to review the ba-
sic techniques involved is of primary importance. Applying these techniques
to more advanced problems is a natural next step. The chapter Calculus
Highlights contains examples of rather challenging applications. You do not
have to be disappointed, if you cannot solve any of these problems; they are
definitely very difficult. It is legitimate to immediately look at the solutions
and learn how the methods from the previous chapters are applied in an
advanced setting. Also, as mentioned in the Preface, it is not a mistake to
practice substantially harder than necessary . . .!

You have solved some of the problems in chapter 5 without resorting to the
solutions. Then . . .

. . . you can take pride in your mastery of the principal techniques
for solving differential equations!
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With the previous explanations aimed at student readers, instructors could
(obviously) also benefit from the interactive problem collection. The solu-
tions of the model problems can be used as examples in class and some of
the variants assigned as homework problems. Students will welcome the pos-
sibility of checking results before submitting or presenting their solutions in
the exercise sections.

Disclaimer: Although the solutions and answers to the variants have been
thoroughly checked, mistakes can always occur1. Please, write to the author
(Klaus.Hoellig@gmail.com) if you find any errors.

1A statement by a teaching assistant to encourage students, which the author will
always remember: “This year, the final exam is not too difficult - your professor could
check the results without committing any errors!”.
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Chapter 1

First Order Differential Equations
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1.1 Initial Value Problem for the Exponential
Function

Solve the initial value problem

y′ = 2y, y(3) = 4 .

Resources: Differential Equation for the Exponential Function

Problem Variants

■ y′ = y/2, y(2) = −1/2

y(0) =?.??:

check

■ y′ = −y, y(1) = 2

y(0) =?.??:

check

■ y′ = y, y(1) = y(2) + 3

y(0) = −?.??:

check
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Solution
d
dx

(c epx) = p (c epx) =⇒ y(x) = c epx solves y′ = py

p = 2 ⇝
y(x) = c e2x

substituting the initial condition y(3) = 4 =⇒

c e2·3 = 4, i.e. c = 4 e−6

and
y(x) = 4 e−6 e2x = 4 e2(x−3)
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1.2 Direction Field for a Differential Equation

Sketch the direction field of the differential equation

y′ = (3− x)(y2 − 1)/4

as well as a few solutions. Determine the regions where solutions are increas-
ing and decreasing, respectively. Do exist constant solutions?

Resources: First Order Differential Equation

Problem Variants

■ y′ = 2y3 + y2 − y

constant solutions for y(0) = −?, ?, ?.?:

check

■ y′ = y2 − 4x2

increasing for |?| >?|?|:

check

■ 2yy′ = −x3

increasing for x? <?:

check
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Solution

Direction field

The direction field of a differential equation assigns to each point P = (x, y)
the tangent direction of the solution passing through P :

(x, y) 7→ (1, y′(x)) = (1, (3− x)(y(x)2 − 1)/4)

a few directions:

(1, 2) 7→ (1, (3−1) · (22−1)/4) = (1, 3/2), (2, 1) 7→ (1, 0), (4, 2) 7→ (1,−3/4)

plot of the direction field and of solutions for several initial values:

0 2 4 6

-2

-1

0

1

2

Monotonicity of Solutions

• increasing (shaded regions) ⇐⇒ (3− x)(y2 − 1) > 0, i.e.

0 ≤ x < 3 ∧ |y| > 1 or x > 3 ∧ |y| < 1

• decreasing ⇐⇒ (3− x)(y2 − 1) < 0, i.e.

0 ≤ x < 3 ∧ |y| < 1 or x > 3 ∧ |y| > 1

• constant solutions for |y(0)| = 1, since y(x)2−1 = 0 ∀x =⇒ y′(x) ≡ 0

The qualitative behavior is illustrated with graphs of the solutions for several
initial values.
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Matlab® script

The direction field can be plotted with the following Matlab® commands.

h = 0.25; % grid spacing
[x,y] = meshgrid(0:h:6,-2:h:2); % grid points
f = @(x,y) (3-x).*(y.^2-1)/4; % slopes
% tangent direction at (x,y): (1,f(x,y))
quiver(x,y,ones(size(f(x,y))),f(x,y))

16



1.3 Linear First Order Initial Value Problem

Determine the solution y(x) of the initial value problem

y′ =
2y

x+ 1
+ 3, y(4) = 0 .

Resources: First Order Linear Differential Equation

Problem Variants

■ y′ =
x+ 1

x
y + ex, y(1) = 0

y(2) =??.??:

check

■ y′ =
2y

2− x
+ 3, y(1) = 1

y(0) = −?.?:

check

■ y′ = − tanx y + cosx, y(0) = 0

y(1) =?.??:

check
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Solution

Structure of the solution

The solution of a linear differential equation y′ = py + f can be written in
the form

y = yh + yp ,

where yp is a particular solution and yh is the general solution of the homo-
geneous differential equation y′h = pyh.

Construction of yh
d
dx

(
c eP (x)

)
= P ′(x)

(
c eP (x)

)
=⇒ yh(x) = c eP (x) solves y′h = pyh with

p = P ′

substituting p(x) = 2/(x+1) ⇝ P (x) =
∫
p(x) dx = 2 ln |x+1|+ c′ and

hence
yh(x) = c′′ eP (x) = c′′ e2 ln |x+1|+c′ = c(x+ 1)2, c = c′′ ec

′

Construction of yp

application of the method of variation of constants, i.e. replacing c by C(x)
in the expression for yh to obtain a particular solution yp
substituting the ansatz yp(x) = C(x)(x + 1)2 into the differential equation
y′ = 2

x+1
y + 3 ⇝

C ′(x)(x+ 1)2 + 2C(x)(x+ 1) =
2C(x)(x+ 1)2

x+ 1
+ 3

cancelling the common term 2C(x)(x+ 1) on both sides ⇝

C ′(x) =
3

(x+ 1)2

integrating ⇝

C(x) = − 3

x+ 1
+ c̃

choosing c̃ = 0 ⇝

yp(x) = C(x)(x+ 1)2 = −3(x+ 1)

18



Initial value

y(4) = 0 =⇒

yh(4) + yp(4) = c(4 + 1)2 − 3(4 + 1) = 0 ,

i.e. c = 3/5, and

y(x) =
3

5
(x+ 1)2 − 3(x+ 1) =

(
3

5
x− 12

5

)
(x+ 1)
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1.4 First Order Differential Equation with Ex-
ponentials

Determine the general solution y(x) of the differential equation

y′ = 2y + 2ex + e2x .

Resources: Method of Undetermined Coefficients

Problem Variants

■ y′ = −y + e3x

c exp(??) + exp(??)/?:

check

■ y′ = y/2− ex/2

(c??) exp(???):

check

■ y′ = −2y + cos(4x)

c exp(???) + cos(??)/?? + sin(??)/?:

check
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Solution

Structure of the solution

The general solution of the differential equation y′ = py +
∑

k fk with p ∈ R
has the form

y(x) = c epx +
∑
k

yk(x), ,

where yk is a particular solution of y′k = pyk+fk (principle of superposition).

Construction of the particular solutions yk

differential equation
y′ = 2y + 2ex + e2x

• ansatz for f1(x) = 2 ex: y1(x) = a ex
substituting into y′1 = 2y1 + f1 ⇝

a ex = 2a ex + 2 ex, i.e. a = −2

• ansatz for f2(x) = e2x: y2(x) = bx e2x
The additional factor x is necessary since f2 solves the homogeneous
differential equation y′ = 2y (resonance).
substituting into y′2 = 2y2 + f2 ⇝

b e2x + 2bx e2x = 2bx e2x + e2x, i.e. b = 1

combining the solutions ⇝

y(x) = c e2x + y1(x) + y2(x) = c e2x − 2 ex + x e2x
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1.5 Separable Differential Equation

Determine the general solution y(x) of

y′ =
sin(x+ y)

cos y
− sinx .

Resources: Separable Differential Equation

Problem Variants

■ y′ =
√
xy, x > 0

y(x) = (
√
x? + c)?:

check

■ y′ = x2y2 + y2

y(x) = 3/(c−?x?x?):

check

■ y′ = xy + x/y

y(x) = ±
√

c exp(x?)??:

check
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Solution

Separation of variables

rewriting the differential equation in the form

g(y)y′ = f(x) (1)

sin(x+ y) = sin x cos y + cosx sin y ⇝

y′ =
sin(x+ y)

cos y
− sinx

=
sinx cos y + cosx sin y

cos y
− sinx cos y

cos y
=

cosx sin y

cos y

bringing x and y to different sides ⇝
cos y

sin y︸ ︷︷ ︸
cot y

y′ = cosx , (2)

i.e. g(y) = cot y, f(x) = cos x in equation (1)

Integration

chain rule =⇒
d
dx

G(y(x)) = g(y(x))y′(x),

∫
g(y(x))y′(x) dx = G(y(x))

with g = G′

remembering the derivation of the indefinite integral G(y) = ln | sin y| of
g(y) = cot y, shown below, or invoking the MapleTM command int(cot(x),x),
integrating equation (2) ⇝

ln | sin y(x)| = sinx+ c

solving for y1 ⇝

y(x) = arcsin(C exp(sinx)), C = ±ec

Indefinite integral of cot y

substituting z = sin y ⇝∫
cos y

sin y
dy =

∫
cos y

z

dy
dz︸︷︷︸

1/ cos y

dz =

∫
1

z
dz = ln |z|+ c = ln | sin y|+ c

1It is not always possible to obtain an explicit formula for y(x), as in this case.
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1.6 Logistic Population Model with Harvesting

The differential equation

u′ = u(4− u)− h

models the number u(t) · 1000 of fishes in a lake after t years for a fishing
rate h. Sketch the direction field for h = 3 and determine the solution u(t)
for u(0) = 4. Which initial values lead to extinction of the fish population?

Resources: Separable Differential Equation

Problem Variants

■ h = 0, u(0) = 2

u(1) =?.??:

check

■ h = 4, u(0) = 3

u(1) =?.?:

check

■ h = 5, u(0) = 2

u(π/4) =?:

check
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Solution

Solution of the initial value problem

separable differential equation:

u′ = u(4− u)− 3 ⇐⇒ − u′

(u− 3)(u− 1)
= 1

partial fraction decomposition ⇝

1

2

(
1

u− 1
− 1

u− 3

)
u′ = 1

integrating, using
∫

1
u(t)−p

u′(t) dt = ln |u(t)−p| and ln a− ln b = ln(a/b) ⇝

1

2
ln

∣∣∣∣u− 1

u− 3

∣∣∣∣ = t+ c

initial value u(0) = 4 =⇒ c = 1
2
ln 3

solving for u(t) with u(t) > 3 ⇝

u(t)− 1 = (u(t)− 3) e2t+ln 3, u(t) =
9 e2t − 1

3 e2t − 1

Direction field

The graphs of solutions u(t) are tangential to the vector field(
t
u

)
7→ F⃗ =

(
1

u(t)(4− u(t))− 3

)

Matlab® -script for plotting F⃗ as well the graphs of constant solutions and
the solution with initial value u(0) = 4

% direction field
[t,u] = meshgrid(0:0.2:6,0.2:0.2:4);
du = u.*(4-u)-3;
quiver(t,u,ones(size(du)),du)

% constant solutions u=1 and u=3
plot([0 0; 6 6],[1 3; 1 3],’-b’)
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% solution with initial value u(0)=4
t = linspace(0,6);
u = (9*exp(2*t)-1)./(3*exp(2*t)-1);
plot(t,u,’-b’)

% labels and text
...

0 2 4 6

0

1

2

3

4

Asymptotic behavior

• u(0) > 3: solutions decrease to 3

• u(t) = 3: stable constant solution (nearby solutions converge to 3)

• 1 < u(0) < 3: solutions increase to 3

• u(t) = 1: unstable constant solution (nearby solutions diverge from 1)

• 0 < u(0) < 1: solutions decrease to 0 (extinction of the fish population)

26



1.7 Separable Initial Value Problem

Determine the solution y(x) of the initial value problem

y′ = exp(x+ y), y(0) = 0 .

Resources: Separable Differential Equation

Problem Variants

■ xyy′ = 1, y(1) = 1

y(0) =?.??:

check

■ y′ = sin(2x)/ cos y, y(0) = 0

y(1) =?.??:

check

■ y′ =
x+ 1

1− y
, y(2) = 2

y(0) =?:

check
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Solution

Separation of variables

multiplying the differential equation y′ = exp(x+ y) by exp(−y) ⇝

exp(−y)y′ = exp(x) , (1)

i.e. the standard form of a separable differential equation with the variables
x and y on different sides

Integration

integrating (1), using that, by the chain rule, d
dx(− exp(−y(x))) = exp(−y(x)) y′(x)

⇝
− exp(−y) = exp(x) + c (2)

Initial condition

y(0) = 0 =⇒

− exp(−0) = exp(0) + c ⇐⇒ −1 = 1 + c ,

i.e. c = −2
solving (2) for y(x) ⇝

y(x) = − ln(2− exp(x))
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1.8 General Solution of a Bernoulli Differential
Equation

Determine the general solution y(x) of the differential equation

y′ = y + xy2 .

Resources: Bernoulli Differential Equation

Problem Variants

■ y′ = y + x/y

y(x) = ±
√

c exp(??)−?−?/?:

check

■ y′ = y/x+ y3

y(x) = ±?/
√

c− 2x?/?:

check

■ y′ = y +
√
y

√
y(x) = c exp(???)−?:

check

29



Solution

Substitution

substituting z = y−1 ⇐⇒ y = 1/z in the differential equation y′ = y + xy2

⇝ linear differential equation

− z′

z2︸︷︷︸
y′

=
1

z
+ x

1

z2
⇐⇒ z′ = −z − x (1)

Solution of the linear differential equation

substituting the ansatz z(x) = a+ bx into (1) ⇝

b = −a− bx− x, i.e. b = −1, a = 1 ,

and hence zp(x) = 1− x is a particular solution

adding the general solution zh(x) = c e−x of the homogeneous differential
equation z′ = −z ⇝

z(x) = zh(x) + zp(x) = c e−x + 1− x

Backsubstitution

undoing the transformation ⇝

y(x) =
1

z(x)
=

1

c e−x + 1− x
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1.9 Linear Substitution

Determine the solution y(x) of the initial value problem

y′ =
1

x+ y
− 1, y(1) = 1 .

Resources: Linear Substitution

Problem Variants

■ y′ = (1− 2x+ 3y)2 + 2/3, y(1) = 1/3

y(0) = −?.??:

check

■ y′ = exp(2x+ y) + 2, y(1) = 2

y(0) =?.??:

check

■ y′ =
x

x+ 2y
− 1

2
, y(0) = 1

y(1) =?.??:

check
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Solution

Substitution

replacing the linear expression x+ y(x) by z(x) ⇝ separable differential
equation:

y′(x) =
1

x+ y(x)
− 1 ⇐⇒ z′ − 1 =

1

z
− 1 ⇐⇒ zz′ = 1 (1)

Solution of the separable differential equation

integrating (1), using that
d
dx

g(z(x)) = g′(z(x))z′(x) with g′(z) = z, and
undoing the substitution ⇝

z(x)2/2︸ ︷︷ ︸
g(z(x))

= x+ c ⇐⇒ (x+ y(x))2 = 2x+ 2c (2)

Initial value

y(1) = 1 =⇒ (1 + 1)2 = 2 + 2c, i.e. c = 1, and, solving (2) for y(x),

y(x) =
√
2x+ 2− x
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1.10 Initial Value Problem for a Differential
Equation with Homogeneous Right-hand
Side

Solve the initial value problem

y′ = x/y + y/x, y(1) = 2 .

Resources: Differential Equation with Homogeneous Right-hand Side,
Separable Differential Equation

Problem Variants

■ y′ =
xy + y2

x2
, y(2) = 1

y(1) = −?.??:

check

■ y′ = y/x− (x/y)2, y(1) = 1

y(1/2) =?.??:

check

■ y′ =
y

x+ y
, y(1) = 1

x =? ln? + y:

check
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Solution

Substitution

substituting y(x) = xz(x) into the differential equation y′ = x/y + y/x ⇝

z + xz′ = 1/z + z ⇐⇒ zz′ =
1

x
(1)

Solution of the separable differential equation

integrating (1), using that, by the chain rule, d
dxz(x)

2 = 2z(x)z′(x) ⇝

z2/2 = ln |x|+ c ⇐⇒ z(x) = ±
√

2 ln |x|+ 2c

undoing the transformation ⇝

y(x) = xz(x) = ±x
√

2 ln |x|+ 2c

Initial value

y(1) = 2 =⇒ 2 = 1 ·
√
2 ln 1 + 2c, i.e. c = 2 and

y(x) = x
√
2 lnx+ 4
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1.11 Exact Initial Value Problem

Solve the initial value problem

(x+ 2y) dx+ 2x dy = 0, y(2) = 2 .

Resources: Exact Differential Equation

Problem Variants

■ (x− y)dx+ (2y − x)dy = 0, y(−1) = 1

y(0) =?.??:

check

■ (3 + y)dx+ (x− 2)dy = 0, y(1) = 3

y(0) =?:

check

■ (yexy − 1)dx+ xexydy = 0, y(0) = 0

y(2) =?.??:

check
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Solution

Verification of exactness

check the necessary condition for exactness, py = qx (which is also sufficient,
if p and q are globally defined, as is the case for this problem), for the
differential equation

(x+ 2y)︸ ︷︷ ︸
p

dx+ 2x︸︷︷︸
q

dy = 0 (1)

py = ∂y(x+ 2y) = 2, qx = ∂x(2x) = 2 ✓

Construction of a Potential

construct F with gradF = (p, q)t:

• ∂xF = p = x+ 2y =⇒ F = x2/2 + 2xy + c(y)

• ∂yF = 2x+ c′(y) = 2x =⇒ c(y) = C

⇝ implicit representation for the solution of (1)

F (x, y) = x2/2 + 2xy + C = 0 (2)

Initial condition

y(2) = 2 =⇒ F (2, 2) = 2 + 8 + C = 0, i.e. C = −10, and, solving (2)
for y,

y(x) =
10− x2/2

2x
=

5

x
− x

4
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1.12 Integrating Factor

Determine the general solution y(x) of the differential equation

y dx+ (1 + 2x+ 3y) dy = 0 ,

with the aid of an integrating factor a(y).

Resources: Integrating Factor

Problem Variants

■ (1 + xy) dx+ x2 dy, a(x)

c =??(x)+?y:

check

■ (y + xy + y3/3) dx+ (x+ y2) dy = 0, a(x)

c = e?(?x+ y?)?:

check

■ (2xy − y3) dx+ (3x2 − 5xy2) dy = 0, a(y)

c = x?y? − xy?:

check
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Solution

Integrating Factor

find a(y) such that

ay︸︷︷︸
p

dx+ a(1 + 2x+ 3y)︸ ︷︷ ︸
q

dy = 0

is exact
necessary condition for exactness, ∂yp = ∂xq (also sufficient since p and q are
globally defined) =⇒

a′(y)y + a(y) = 2a(y) ⇐⇒ a′(y) = a(y)/y ,

choosing a(y) = y ⇝

y2 dx+ (y + 2xy + 3y2) dy = 0 (1)

Solution of the exact differential equation

construct F with gradF = (p, q)t, to obtain an implicit representation
F (x, y) = 0 for the solution y(x) of (1)
∂xF = p = y2 =⇒ F = xy2 + c(y)
∂yF = 2xy + c′(y) = q = y + 2xy + 3y2 =⇒ c(y) = y2/2 + y3 + C, i.e.

F (x, y) = xy2 + y2/2 + y3 + C
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1.13 Discretization Error of Difference Meth-
ods

The diffential equation y′ = f(x, y) can be approximated with the trapezoidal
rule:

y(x+ h) = y(x) +
h

2
(f(x, y(x)) + f(x+ h, y(x+ h))) + h∆(x, h) .

Show that the discretization error satisfies ∆(x, h) = ch2 +O(h3).

Resources: Discretization Error

Problem Variants

■ Euler’s method: y(x+ h) = y(x) + hf(x, y(x)) + h∆(x, h)

∆(1, h) = (−?.?)h+O(h2) for y(x) = ln x:

check

■ midpoint rule: y(x+ h) = y(x− h) + 2hf(x, y(x)) + h∆(x, h)

∆(1, h) = (−?)h2 +O(h3) for y(x) = 1/x:

check

■ Runge-Kutta method: y(x+h) = y(x)+hf(x+h/2, y(x)+(h/2)f(x, y(x)))+
h∆(x, h)

∆(0, h) = (?.??)h2 +O(h3) for y(x) = ex (f(x, y) = ex):

check
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Solution

Taylor expansion of y and y′

y(x+ h) = y0 + y1h+
1

2
y2h

2 +
1

6
y3h

3 + · · · , yk = y(k)(x)

y′(x+ h) = f(x+ h, y(x+ h)) = y1 + y2h+
1

2
y3h

2 + · · ·

Discretization error

substituting the Taylor expansions of the solution of the differential equation
y′(x) = f(x, y(x)) into the trapezoidal approximation

y(x+ h) = y(x) +
h

2
(f(x, y(x)) + f(x+ h, y(x+ h))) + h∆(x, h)

⇝ expansion of the truncation error

∆(x, h) =
y(x+ h)− y(x)

h
− y′(x) + y′(x+ h)

2

= y1 +
1

2
y2h+

1

6
y3h

2 −
y1 + y1 + y2h+ 1

2
y3h

2

2
+O(h3)

= − 1

12
y3︸ ︷︷ ︸

c

h2 +O(h3)
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1.14 First Order Differential Equation with MapleTM

Determine the solution y(x) of the initial value problem

(x− 3) y′ = y2 − 1, y(4) = 0 .

Resources: Differential Equations with MapleTM

Problem Variants

■ y′ = y + x/y, y(1) = 1

y(2) =?.??:

check

■ (x− 2y) dx = (2x+ y) dy, y(0) = 1

y(1) =?.??:

check

■ y′ = y + x sinx expx, y(0) = 0

y(1) =?.??:

check
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Solution

General solution of the differential equation

# load the differential equation package
with(DEtools)
# specify the differential equation
de := (x-3)*diff(y(x),x) = y(x)^2-1
# determine the type of the differential equation (optional)
odeadvisor(de)

[_separable]

# obtain the general solution of the differential equation
gen_sol := dsolve(de)

y(x) = − tanh(ln(x− 3) + c)

This looks complicated. The MapleTM command simplify(gen_sol) does
not change this expression. Using tanh t = sinh t

cosh t
= et−e−t

et+e−t , a human might
prefer the following manipulation:

− tanh(ln(x− 3) + c) = −(x− 3)ec − (x− 3)−1e−c

(x− 3)ec + (x− 3)−1e−c

=
1− C2(x− 3)2

1 + C2(x− 3)2

(1)

where, for the last equality, the fraction was expanded with (x− 3)ec and ec
was abbreviated with C.

Solution of the initial value problem

# specify the initial condition
ic := y(4)=0
# solve the initial value problem
sol := dsolve({de,ic})

y(x) =
−x2 + 6x− 8

x2 − 6x+ 10

cf. the expression (1) with C = 1

42



1.15 First Order Boundary Value Problem with
Matlab®

Determine the positive π-periodic solution y(x) of the differential equation

y′ = y(1− y) + sin2 x .

Resources: Differential Equations with Matlab®

Problem Variants

■ y′ = ln(x+ y), y(4) = y(3) + 2

y(3) =?.??:

check

■ y′ = −y2 − e−x, y(0) = 1, y(z) = 0

z =?.??:
check

■ y′ = e−y + ax, y(0) = 0, y(1) = 1

a =?.??:
check
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Solution

Function for computing y(π) for an initial value y(0)

function y_pi = ivp(y0)
% solves y’ = y*(1-y)+sin(x)^2, y(0)=y0 and returns y(pi)
f = @(x,y) y*(1-y)+sin(x)^2;
[X,Y] = ode45(f,[0 pi],y0);
y_pi = Y(end);

Solution of the equation y(0) = y(π)

err = @(y0) ivp(y0)-y0; % periodicity condition
y_pi = fzero(err,1) % computes a zero of err near 1

1.2363
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1.16 First Order Initial Value Problem with Mat-
lab®

Plot the solution y(x) of the initial value problem

y′ = cos y + sinx, y(0) = 0 ,

on the interval [0, 10] and determine y(10).

Resources: Differential Equations with Matlab

Problem Variants

■ y′ = cos(xy)

y(10) =?.??:

check

■ y′ = (1 + y)e−x (in view of the linearity of the differential equation, use
the Matlab® function integral)

y(10) =?.??:

check

■ y′ = ln(2 + x− y)

y(10) =?.??:

check
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Solution

Matlab® script for computing y(x) for x ∈ [0, 10]

dy = @(x,y) cos(y)+sin(x) % function (x,y) -> y’(x)
y0 = 0 % initial value y(x0), x0 = X(1)
% solution of the initial value problem on [0,10]
[X,Y] = ode45(dy,[0,10],y0)
% X: evaluation points
% Y(k): y(X(k))

Plot of y(x), 0 ≤ x ≤ 10

plot(X,Y)
Y(end) % y(10)

ans = 1.7419

0 5 10
0

0.5

1

1.5

2

2.5
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Chapter 2

Second Order Differential
Equations
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2.1 Initial Value Problem for a Linear Oscilla-
tor

Determine the solution u(t) of the initial value problem

u′′ + 4u = sin(2t), u(0) = 1, u′(0) = 0 .

Resources: Linear Oscillator, Method of Undetermined Coefficients

Problem Variants

■ u′′ + 9u = cos(2t), u(0) = 1, u′(0) = 3

u(π) = −?.?:

check

■ u′′ + 2u = 1, u(0) = 0, u′(0) = 0

u(1) =?.??:

check

■ u′′ + u = sin(t), u(0) = 0, u′(0) = 1

u(π) =?.??:

check
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Solution

Structure of the solution

linearity of the differential equation

u′′ − 4u = sin(2t)

=⇒ u = uh + up with uh the solution of the homogeneous differential
equation u′′ + 4u = 0, i.e.

uh(t) = c1 cos(2t) + c2 sin(2t)

and up a particular solution of the inhomogeneous differential equation u′′ +
4u = sin(2t)

Particular solution

resonance (The right-hand side sin(2t) solves the homogeneous differential
equation.) ⇝ ansatz

up(t) = tũ(t), ũ(t) = c̃1 cos(2t) + c̃2 sin(2t)

substituting this expression into the differential equation and computing the
second derivative of tũ′′(t) with Leibniz’ rule ((fg)′′ = f ′′g + 2f ′g′ + fg′′)
⇝

sin(2t)
!
= u′′

p + 4up = 2ũ′ + tũ′′ + 4tũ︸ ︷︷ ︸
=0

= −4c̃1 sin(2t) + 4c̃2 cos(2t) ,

i.e. c̃1 = −1/4, c̃2 = 0 and up(t) = −1
4
t cos(2t)

adding up to the general solution of the homogeneous differential equation
⇝

u(t) = uh(t) + up(t) = c1 cos(2t) + c2 sin(2t)−
1

4
t cos(2t)

Initial conditions

1
!
= u(0) = c1 cos(2t) + c2 sin(2t)−

1

4
t cos(2t)

∣∣∣∣
t=0

= c1

0
!
= u′(0) = −2 sin(2t) + 2c2 cos(2t)−

1

4
cos(2t) +

1

2
t sin(2t)

∣∣∣∣
t=0

= 2c2 − 1/4
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⇝ c1 = 1, c2 = 1/8 and

u(t) = cos(2t) +
1

8
sin(2t)− 1

4
t cos(2t)
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2.2 General Solution of a Homogeneous Second
Order Differential Equation with Constant
Coefficients

Determine the general solution u(t) of the differential equation

u′′ + u′ − 2u = 0 .

Resources: Homogeneous Second Order Differential Equation with Con-
stant Coefficients

Problem Variants

■ 2u′′ + 3u′ − 2u = 0

u(t) = c1 exp(t/?) + c2 exp(−?t):

check

■ u′′ + 2u′ + u = 0

u(t) = (c1 + c2?) exp(?t):

check

■ u′′ + 4u′ + 8u = 0

u(t) = (c1 cos(?t) + c2 sin(?t)) exp(??t):

check
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Solution

substituting the ansatz u(t) = eλt into the differenital equation u′′+u′−2u =
0 ⇝

λ2 eλt + λ eλt − 2 eλt = 0 ⇐⇒ p(λ) = λ2 + λ− 2 = 0

two real zeros λ1 = 1, λ2 = −2 of the characteristic polynomial p ⇝
general solution

u(t) =
∑
k

ckeλkt = c1et + c2e−2t
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2.3 Second Order Linear Inhomogeneous Ini-
tial Value Problem

Determine the solution u(t) of the initial value problem

u′′ − 2u′ + 5u = 4et, u(0) = u′(0) = 0 .

Resources: Homogeneous Second Order Differential Equation with Con-
stant Coefficients, Method of Undetermined Coefficients

Problem Variants

■ u′′ − u′ − 2u = 4t, u(0) = −1, u′(0) = 3

u(1) =?.??:

check

■ u′′ + 2u′ + 2u = 5 sin(2t), u(0) = −1, u′(0) = 1

u(1) =?.??:

check

■ u′′ − u = 2et, u(0) = 2, u′(0) = 2

u(1) =?.??:

check
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Solution

Structure of the solution

linearity of the differential equation

u′′ − 2u′ + 5u = 4et

=⇒ u = uh + up with up a particular solution and uh a solution of the
homogeneous differential equation

u′′ − 2u′ + 5u = 0 (1)

with integration constants determined by the initial conditions

Construction of uh

characteristic polynomial of (1):

λ2 − 2λ+ 5

complex conjugate zeros λ = r ± si = 1±
√
12 − 5 = 1± 2i ⇝

uh(t) = ert(c1 cos(st) + c2 sin(st)) = et(c1 cos(2t) + c2 sin(2t))

Construction of up

substituting the ansatz up(t) = c et into the differential equation u′′ − 2u′ +
5u = 4et ⇝

c et − 2c et + 5c et = 4 et ⇐⇒ c = 1

i.e. up(t) = et

Initial values

u(0) = 0, u′(0) = 0 for

u(t) = uh(t) + up(t) = et(c1 cos(2t) + c2 sin(2t)) + et

⇝ linear system for c1 and c2:

0
!
= uh(0) + up(0)

= et(c1 cos(2t) + c2 sin(2t)) + et
∣∣∣
t=0

= c1 + 1 =⇒ c1 = −1

0
!
= u′

h(0) + u′
p(0)

= et(− cos(2t) + c2 sin(2t)) + et(2 sin(2t) + 2c2 cos(2t)) + et
∣∣∣
t=0

= −1 + 2c2 + 1 =⇒ c2 = 0 ,

i.e. u(t) = et(1− cos(2t))
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2.4 Linear Second Order Boundary Value Prob-
lem

Solve the boundary value problem

u′′ + 2u′ + 2u = 0, u(0) = 1, u′(π) = 0 .

Resources: Homogeneous Second Order Differential Equation with Con-
stant Coefficients

Problem Variants

■ u′′ = 4u, u(0) = 1, u(1) = 0

u(1/2) =?.??:

check

■ u′′ = −u, u(π) = u(0) + 1, u′(π) = u′(0)− 1

u(0) = −?.?:

check

■ u′′ + 3u′ + 2u = 0, u′(0) = 0, u′(1) = 1

u(0) = −?.??:

check
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Solution

General solution

characteristic polynomial of the differential equation u′′ + 2u′ + 2u = 0:

λ2 + 2λ+ 2

zeros λ1,2 = −1± i ⇝

u(t) = e−t(c1 cos t+ c2 sin t) (1)

Boundary conditions

u(0) = 1, u′(π) = 0 ⇝ linear equations for ck:

• 1 = u(0) = e−t(c1 cos t+ c2 sin t)|t=0 =⇒ c1 = 1

• 0 = u′(π) = −e−t(cos t+ c2 sin t) + e−t(− sin t+ c2 cos t)|t=π

= −e−π(−1) + e−π(−c2)
=⇒ c2 = 1

substituting the values ck into (1) ⇝

u(t) = e−t(cos t+ sin t)
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2.5 Initial Value Problem for Euler’s Differen-
tial Equation

Solve the initial value problem

t2u′′ − 2u = 0, u(1) = 3, u′(1) = 3 .

Resources: Euler’s Differential Equation

Problem Variants

■ t2u′′ + tu′ − u = 1, u(1) = −1, u′(1) = 2

u(2) =?.?:

check

■ t2u′′ + tu′ = −4u, u(1) = 2, u′(1) = 0

u(2) =?.??:

check

■ 4t2u′′ = −u, u(1) = 2, u′(1) = 3

u(4) =?.??:

check
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Solution

General solution

substituting the ansatz u(t) = tλ into the differential equation t2u′′ − 2u = 0
⇝

t2 λ(λ− 1)tλ−2︸ ︷︷ ︸
u′′

−2tλ = 0 ⇐⇒ λ2 − λ− 2 = 0

possible exponents λ1 = −1, λ2 = 2 ⇝

u(t) = c1t
λ1 + c2t

λ2 = c1t
−1 + c2t

2

Initial values

u(1) = 3, u′(1) = 3 ⇝ linear system:

3
!
= u(1) = c1t

−1 + c2t
2
∣∣∣
t=1

= c1 + c2,

3
!
= u′(t) = −c1t

−2 + 2c2t
∣∣∣
t=1

= −c1 + 2c2

solution: c1 = 1, c2 = 2, i.e.

u(t) = t−1 + 2t2
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2.6 Autonomous Initial Value Problem

Solve the initial value problem

3u′′u′ = 2u, u(1) = 1, u′(1) = 1 .

Resources: Phase Plane

Problem Variants

■ 2u′′u′ = eu, u(0) = 0, u′(0) = 1

u(4) =?:

check

■ 2u′′ = u′u, u(1) = 2, u′(1) = 2

u(4) = −?:

check

■ uu′′ = (u′)2, u(2) = 1, u′(2) = 1

u(3) =?.??:

check
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Solution

Reduction to two first order differential equations

substituting u′(t) = v(u) into the differential equation 3u′′u′ = 2u ⇝

3u′′(t)u′(t) = 3

(
d
dt
v(u)

)
v(u) = 3

(
d
du

v(u)
du
dt

)
v(u)

= 3 (v′(u)v(u)) v(u) = 2u

Solving the first order differential equations

• integrating 3v′v2 = 2u with respect to u ⇝

v3 = u2 + c

with c = 0 in view of the initial conditions u(1) = 1, v(u(1)) = u′(1) = 1

• solving v3 = u2 for v = u′ and integrating the resulting differential
equation

u′(t) = v(u(t)) = u(t)2/3 ⇐⇒ u−2/3u′ = 1

with respect to t ⇝
3u1/3 = t+ C

with C = 2 in view of the initial condition u(1) = 1, i.e.

u(t) = (t+ 2)3/27
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2.7 Damped Forced Oscillations

Determine the periodic solution u⋆(t) of the differential equation

u′′ + u′ + u = cos(ωt) ,

as well as the resonance frequency ω⋆.

Resources: Forced Damped Oscillations

Problem Variants

■ u′′ + 2u′ + 3u = 4 cos(ωt), resonance frequency

ω⋆ =?:

check

■ u′′ + 3u′ + u = 5 sin(2t), periodic solution

u⋆(0) = −?.??:

check

■ u′′ + u′ + 2u = eit, periodic solution

u⋆(t) =?.??ei(t−?.??):

check
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Solution

Periodic solution

substituting the ansatz u(t) = a cos(ωt) + b sin(ωt) for the periodic solution
into the differential equation u′′ + u′ + u = cos(ωt) ⇝

(−aω2C − bω2S) + (−aωS + bωC) + (aC + bS) = C

with C = cos(ωt) and S = sin(ωt)
comparing the coefficients of C and S ⇝ linear system for a and b:

(1− ω2) a + ω b = 1
−ω a + (1− ω2) b = 0

Cramer’s rule ⇝

a =
1

d

∣∣∣∣ 1 ω
0 1− ω2

∣∣∣∣ = 1− ω2

d
, b =

1

d

∣∣∣∣ 1− ω2 1
−ω 0

∣∣∣∣ = ω

d

d =

∣∣∣∣ 1− ω2 ω
−ω 1− ω2

∣∣∣∣ = (1− ω2)2 + ω2

and
u(t) =

1

(1− ω2)2 + ω2

(
(1− ω2) cos(ωt) + ω sin(ωt)

)
Resonance frequency

maximizing the amplitude

c =
√
a2 + b2 =

√
(1− ω2)2 + ω2/d = 1/

√
d ,

or, equivalently, minimizing d(Ω) = (1− Ω)2 + Ω, Ω = ω2 ⇝

0
!
= d′(Ω) = −2(1− Ω) + 1 ⇐⇒ Ω = 1/2 ,

i.e. the resonance frequency ω⋆ = 1/
√
2
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2.8 Motion, Governed by a Potential

Determine the maximal velocity vmax = maxt |u′(t)| for the solution u(t) of
the initial value problem

u′′ = −2u3, u(0) = 2, u′(0) = 0 .

Resources: Conservation of Energy

Problem Variants

■ u′′ = −u exp(u2), u(1) = 2, u′(1) = 2

vmax =?.??:

check

■ u′′ = sinu, u(0) = 0, u′(0) = 0

vmax =?:

check

■ u′′ = −u3 + u, u(0) = 0, u′(0) = 2

vmax =?.??:

check
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Solution

Curves of constant energy in the phase plane

multiplying the differential equation u′′ = −2u3 with u′ and integrating ⇝

u′′u′ + 2u3u′ = 0 ⇐⇒ d
dt
E(t) = 0, E =

1

2
v2 +

1

2
u4, v = u′ ,

i.e. constant energy E, yielding an implicit representation of the solution in
the (u, v)-plane

Maximal velocity

u(0) = 2, v(0) = u′(0) = 0 =⇒

E =
1

2
v2 +

1

2
u4 = 0 +

1

2
24 = 8 ,

and |v| =
√
2E − u4 is maximal for u = 0, i.e.

vmax =
√
2E =

√
2 · 8 = 4
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2.9 Phase Plane Trajectories for an Autonomous
Second Order Differential Equation

Solve the pendulum equation

u′′ = −π sin(πu)

and plot typical trajectories in the (u, v)-plane (v = u′) near the equilibrium
points.

Resources: Phase Plane, Conservation of Energy

Problem Variants

■ u′′ = 3u2 − 4u3

constant energy E = v?/? + u? − u?:

check

■ u′′ = − 1

1 + u2

constant energy E =?2/? + arctanu:

check

■ u′′ =
2u

1 + u2

constant energy E = v2/?− ln(? + u?):

check
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Solution

Equilibrium points

points (u, v) = (u, u′) with u′(t) = u′′(t) = 0

u′′(t) = −π sin(πu(t)) =⇒ u(t) = πk, k ∈ Z ,

i.e., (u, v) = (πk, 0)

Solution of the differential equation

multiplying the differential equation u′′ + π sin(πu) = 0 with v = u′ ⇝

v′(t)︸︷︷︸
u′′

v(t) + π sin(πu(t))u′(t) = 0

applying the chain rule and integrating ⇝

v(t)2/2− cos(πu(t)) = E ∀t ,

an implicit representation of the solutions in the phase plane (curves of con-
stant energy E)

Alternative solution

dividing the differential equations u′(t) = v(t), v′(t) = −π sin(πt)) ⇝

dv
du

=
dv
dt

/du
dt

= −π sin(πu)

v
,

a separable differential equation for v(u) which is easily integrated

Phase plane trajectories with Matlab®

hold on % overlay of plots

% evaluation grid
umin = -2.5; umax = 2.5; vmin = -2.5; vmax = 2.5;
h = 0.01; % grid spacing
[u,v] = meshgrid(umin:h:umax,vmin:h:vmax);

% level curves of constant energy
E = v.^2/2-cos(pi*u);
contour(u,v,E,8,’color’,’b’)
% trajectory, separating periodic and unbounded solutions
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contour(u,v,E,[1 1],’color’,’r’) % energy E=1
% equilibrium points
plot([-2 -1 0 1 2],[0 0 0 0 0],’.k’);

hold off

-2 -1 0 1 2

-2

-1

0

1

2

67



2.10 Forced Oscillations with MapleTM

Plot the solution u(t) of the initial value problem

u′′ + 4u′ + 3u = cos t, u(0) = 1, u′(0) = 0 ,

on the interval [0, 4π].

Resources: Differential Equations with MapleTM

Problem Variants

■ u′′ + u′ + u = sin(2t), u(0) = 0, u′(0) = 0

u(2π) = −?.??:

check

■ u′′ + 4u = cos(2t), u(0) = 1, u′(0) = 0

u(2π) =?:

check

■ u′′ + 100u = sin(9t), u(0) = 0, u′(0) = 1

u(2π) =?:

check

Notice the different qualitative behavior of the solutions for the three vari-
ants.
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Solution

General solution of the differential equation

# load the differential equation package
with(DEtools)
# specify the differential equation
de := D^(2)(u)(t)+4*D(u)(t)+3*u(t) = cos(t)
# determine the general solution
> gen_sol := dsolve(de)

gen_sol := u(t) = e−3t_C2 + e−t_C1 +
1

10
cos t+

1

5
sin t

Solution of the initial value problem

# specify the initial conditions
ic := {u(0)=1,D(u)(0)=0}
# solve the initial value problem
sol := IVPsol(ic,gen_sol)

sol := u(t) = −7e−3t

20
+

5e−t

4
+

cos(t)

10
+

sin(t)

5

# plot the solution
DEplot(de,u(t),t=0..4*Pi,{ic})

For DEplot, the MapleTM syntax seems to require an additional pair of curly
brackets unlike for the command IVPsol.

strong damping → fast decay of the nonperiodic component
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2.11 Sturm-Liouville Problem with MapleTM

Solve the boundary value problem

(pu′)′ = qu, u(0) = 0, u(1) = 1 ,

for p(t) = et, q(t) = e−t and for p(t) = eu(t), q(t) = e−u(t).

Resources: Differential Equations with MapleTM

Problem Variants

■ p(t) = 1 + t, q(t) = 1, u′(0) = 0, u(1) = 1

u(1/2) =?.??:

check

■ p(t) = 1, q(t) = t+ u(t), u(0) = 0, u(1) = 1

u′(0) =?.??:

check

■ p(t) = e−t, q(t) = 2e−t, u′(0) = 1, u′(1) = 0

u(1/2) = −?.??:

check
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Solution

Analytic solution: p(t) = et, q(t) = e−t

# differential equation
de := diff(exp(t)*diff(u(t),t),t) = exp(-t)*u(t)
# boundary conditions
bc := u(0)=0, u(1)=1
# solution
sol := simplify(dsolve({de,bc}))

sol := u(t) =
cosh(1) sinh(e−t)− sinh(1) cosh(e−t)

cosh(1) sinh(e−1)− sinh(1) cosh(e−1)

An impressive MapleTM result!

Numerical solution: p = eu(t), q(t) = e−u(t)

de := diff(exp(u(t))*diff(u(t),t),t) = exp(-u(t))*u(t)
bc := u(0)=0, u(1)=1
sol := dsolve({de,bc})

sol := ()

MapleTM cannot obtain an analytic solution (neither can a human?) ⇝
numerical method

sol := dsolve({de,bc},numeric)
# dsolve returns a procedure, which evaluates the solution

sol := proc(x_bvp) . . . end proc

# value and derivative at t=1/2
sol(1/2) [

t = 0.5, u(t) = 0.5990,
d
dt
u(t) = 0.9381

]
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2.12 Second Order Differential Equation with
Matlab®

Determine and plot the solution u(t) of the initial value problem

u′′ = −tu3, u(0) = 0, u′(0) = 1 ,

on the interval [0, 10].

Resources: Differential Equations with Matlab

Problem Variants

■ u′′ = −u+ cos(t2), u(0) = 0, u′(0) = 0

u(10) = −?.??:

check

■ u′′ = −u′/2− 2 sinu, u(0) = 1, u′(0) = 0

u(10) =?.???:

check

■ u′′ = u′ cos t− u, u(0) = 1, u′(1) = 1

u(10) = −?.??:

check
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Solution

Transformation to standard form

introducing variables for the function u and its first derivative, v1 := u,
v2 := u′ ⇝ equivalent first order system for the differential equation
u′′ = −tu3:

v′ =

(
v′1
v′2

)
=

(
v2

−tv31

)
=: f(t, v)

Matlab® script

% right-hand side of the differential equation
f = @(t,v) [v(2); -t*v(1)^3];
% solution of the initial value problem with moderate accuracy
% on the interval [0,10] with initial condition v(0)=[0;1]
[t,v] = ode45(f,[0,10],[0;1]);
% v(k,1:2): solution at time t(k)
% simultaneous plot the two components of u and u’ of v
plot(t,v)

0 2 4 6 8 10

-1

0

1
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2.13 Newton’s Method for a Boundary Value
Problem

Solve the boundary value problem

u′′ = exp(tu), u(0) = 0, u(1) = 1 ,

by determining the slope s = u′(0) (shooting method).

Resources: Differential Equations with Matlab, Differentiation with
Respect to Initial Conditions

Problem Variants

■ u′′ = cos(t+ u), u(0) = 0, u(1) = 1

u′(0) =?.??:

check

■ u′′ = tuu′, u(0) = 1, u(2) = 3

u′(0) =?.??:

check

■ u′′ = t+ u2, u(0) = 0, u′(1) = 1

u′(0) =?.??:

check
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Solution

Newton’s method

equation to be solved:
f(s) = u(1, s)− 1 = 0

with u(t, s) (The slope s is added as an additional parameter.) the solution
of the initial value problem

utt(t, s) = exp(tu(t, s)), u(0, s) = 0, ut(0, s) = s (1)

computation of the derivative f ′(s) = us(1, s) by differentiating (1) with
respect to s:

utts(t, s) = exp(tu(t, s))tus(t, s), us(0, s) = 0, uts(0, s) = 1 (2)

simultaneous solution of the initial value problems (1,2) as a first order system
for v = (u, ut, us, ust)

t:

v′ = F (t, v) =


v2

exp(tv1)
v4

exp(tv1)tv3

 , v(0) =


0
s
0
1



Matlab® implementation of the Newton iteration

% linear interpolation of the boundary values 0,1
% -> initial slope
s = 1
% implementation assuming convergence
% (no "safety checks")
ds = inf; tol = 1.0e-10 % tolerance
while abs(ds) > tol

% Newton step: s <- s-f/df
[f,df] = newton(s); ds = f/df; s = s-ds

end

1.000000000000000
0.436197527177781
0.424933421261371
0.424929983699617
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0.424929983699298

function [f,df] = newton(s)
F = @(t,v) [v(2); exp(t*v(1)); v(4); exp(t*v(1))*t*v(3)];
% solution of the system
[t,vt] = ode45(F,[0;1],[0;s;0;1]); % vt(:,k) = v_k(t(:))
f = vt(end,1)-1; df = vt(end,3); % u(1,s)-1; u_s(1,s)

⇝ slope s ≈ 0.4249299836
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Chapter 3

Systems of Differential Equations

77



3.1 Taylor Approximation for a System of Dif-
ferential Equations

Approximate x(0.1) and y(0.1) for the initial value problem

x′ = y3, x(0) = 1, y′ = x4, y(0) = 2 ,

using quadratic Taylor polynomials.

Resources: System of Differential Equations

Problem Variants

■ x′ = cos(x+ y), y′ = sin(xy), x(0) = 0, y(0) = π

x(0.1) ≈ −?.?, y(0, 1) ≈?.??:

check

■ u′ =

(
1 1
1 1

)
u, u(0) =

(
1
0

)

u(0.1)t ≈ (?.??, ?.??):

check

■ x′ = x xtx, x(0) = (1, 2)t

x(0.1)t ≈ (?.??, ?.??):

check
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Solution

Second derivatives

differentiating the differential equations x′ = y3, y′ = x4 ⇝

x′′(t) =
d
dt
y(t)3 = 3y(t)2y′(t) = 3y(t)2x(t)4

y′′(t) =
d
dt
x(t)4 = 4x(t)3x′(t) = 4x(t)3y(t)3

initial conditions x(0) = 1, y(0) = 2 ⇝

x′(0) = y(0)3 = 8, x′′(0) = 3y(0)2x(0)4 = 12, y′(0) = 1, y′′(0) = 32

Quadratic Taylor approximation

evaluating the Taylor polynomial at 0.1 ⇝

x(0.1) ≈ x(0) + x′(0) · 0.1 + 1

2
x′′(0) · 0.12

= 1 + 8 · 0.1 + 6 · 0.01 = 1.86

y(0.1) ≈ 2 + 1 · 0.1 + 16 · 0.01 = 2.26
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3.2 Initial Value Problem for a Linear Homo-
geneous System

Solve the initial value problem

u′
1 = 3u1 − u2, u1(0) = 0,

u′
2 = 4u1 − 2u2, u2(0) = 3 .

Resources: Diagonalization of a Linear System of Differential Equations

Problem Variants

■
u′
1 = 2u1 + u2, u1(0) = 1,

u′
2 = u1 + 2u2, u2(0) = 2

u(ln 2)t = (??, ??):

check

■
u′
1 = u2, u1(0) = 1,

u′
2 = 2u1 + u2, u2(0) = 5

u(ln 2)t = (?.?, ??.?):

check

■
u′
1 = u2, u1(0) = 2,

u′
2 = −u1, u2(0) = 2

u(π)t = (−?,−?):

check
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Solution

Matrix form of the linear system of differential equations

u′
1 = 3u1 − u2, u′

2 = 4u1 − 2u2 ⇝(
u′
1

u′
2

)
=

(
3 −1
4 −2

)
︸ ︷︷ ︸

A

(
u1

u2

)
,

(
u1(0)
u2(0)

)
=

(
0
3

)

Eigenvalues

characteristic polynomial

p(λ) = det

(
3− λ −1
4 −2− λ

)
︸ ︷︷ ︸

A−λE

= (3− λ)(−2− λ)− 4(−1) = λ2 − λ− 2

zeros of p ⇝ eigenvalues λ1 = −1, λ2 = 2 of A

Eigenvectors

determine the eigenvectors v by solving (A− λE)v = (0, 0)t:

A− λ1E =

(
3− (−1) −1

4 −2− (−1)

)
=

(
4 −1
4 −1

)
=⇒ v1 ∥

(
1
4

)
A− λ2E =

(
1 −1
4 −4

)
=⇒ v2 ∥

(
1
1

)

General solution

sum of eigensolutions ⇝

u(t) =
2∑

k=1

ckvkeλkt = c1

(
1
4

)
e−t + c2

(
1
1

)
e2t

Initial values

u(0) = (0, 3)t ⇝ linear system for the constants ck:

c1

(
1
4

)
+ c2

(
1
1

)
=

(
0
3

)
=⇒ c1 = 1, c2 = −1 and

u(t) =

(
e−t − e2t
4e−t − e2t

)
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3.3 Initial Value Problem for a Three-Dimensional
System

Determine the eigenvalues and eigenvectors of the matrix

A =

 1 1 0
1 0 1
0 1 1


and solve the initial value problem u′ = Au, u(0) = (0, 1, 0)t.

Resources: Diagonalization of a Linear System of Differential Equations

Problem Variants

■ A =

 0 1 1
1 0 1
1 1 0

, u(0) = (1, 1, 0)t

u2(1) =?.??:

check

■ A =

 0 1 0
1 1 1
0 1 0

, u(0) = (0, 1, 1)t

u2(1) =?.??:

check

■ A =

 0 1 1
1 1 0
1 0 1

, u(0) = (1, 0, 1)t

u2(1) =?.??:

check
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Solution

Eigenvalues

characteristic polynomial

det(A− λE) =

∣∣∣∣∣∣
1− λ 1 0
1 0− λ 1
0 1 1− λ

∣∣∣∣∣∣
= (1− λ)(−λ)(1− λ)− (1− λ)− (1− λ) = (1− λ)(−λ+ λ2 − 2)

zeros ⇝ eigenvalues λ = 2, ϱ = 1, σ = −1

Eigenvectors

• Since all rows of A sum to 2, ξ = (1, 1, 1)t is an eigenvector to λ = 2.

• eigenvector to ϱ = 1: nontrivial solution η of 0
0
0

 = (A− ϱE)η =

 0 1 0
1 −1 1
0 1 0

 η1
η2
η3


⇝ η = (1, 0,−1)t as a possible choice

• eigenvector to σ = −1: orthogonality of the eigenvectors for symmetric
matrices =⇒ ζ = (1,−2, 1)t up to normalization

General solution of u′ = Au

sum of eigensolutions:

u(t) = aξeλt + bηeϱt + cζeσt = a

 1
1
1

 e2t + b

 1
0
−1

 et + c

 1
−2
1

 e−t

Initial value

u(0) = (0, 1, 0)t ⇐⇒

a

 1
1
1

+ b

 1
0
−1

+ c

 1
−2
1

 =

 0
1
0
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formula for the coefficients of a vector with respect to an orthogonal basis
(scalar product with the normalized basis vectors) =⇒

a =
u(0)tξ

ξtξ
=
(
0 1 0

) 1
1
1

/( 1 1 1
) 1

1
1

 =
1

3

and, analogously, b = 0/2 = 0, c = −2/6 = −1/3

⇝ solution

u(t) =
1

3

 1
1
1

 e2t − 1

3

 1
−2
1

 e−t =
1

3

 e2t − e−t

e2t + 2e−t

e2t − e−t



84



3.4 Linear Homogeneous System of Differential
Equations

Determine the general solution of

u′
1 = u1 + u2, u′

2 = −u1 + u2 .

Resources: Diagonalization of a Linear System of Differential Equations

Problem Variants

■ u′
1 = 2u2, u′

2 = 2u1 + 3u2

u(t) = (c1e4t+?c2e?t, ?c1e?t + c2e?t):

check

■ u′
1 = u2, u′

2 = −4u1

u(t) = (c1 cos(?t) + c2 sin(?t),−?c1 sin(?t)+?c2 cos(?t)):

check

■ u′
1 = 3u1 + 3u2, u′

2 = 2u1 + 4u2

u(t) = (c1e?t + 3c2et, c1e?t??c2et):

check
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Solution

Matrix form of the system of differential equations

u′
1 = u1 + u2, u′

2 = −u1 + u2 ⇝(
u′
1

u′
2

)
=

(
1 1
−1 1

)
︸ ︷︷ ︸

A

(
u1

u2

)
⇐⇒ u′ = Au

Eigensolutions

characteristic polynomial

p(λ) = det(A− λE) = det

(
1− λ 1
−1 1− λ

)
= (1− λ)2 + 1

zeros of p ⇝ eigenvalues λ± = 1± i of A
corresponding eigenvectors (solutions of (A− λE)v = (0, 0)t):

v+ = (1, i)t, v− = (1,−i)t

eigensolutions:

u±(t) = v±e(1±i)t =

(
1
±i

)
et(cos t± i sin t)

Real general solution

real and imaginary parts of u+ ⇝ real solutions

ũ+(t) = Reu+(t) = Re

(
et(cos t+ i sin t)
et(i cos t− sin t)

)
= et

(
cos t
− sin t

)
ũ−(t) = Imu+(t) = et

(
sin t
cos t

)
alternatively: ũ+ = (u+ + u−)/2, ũ− = (u+ − u−)/(2i)
linear combination ⇝ general solution

u(t) = c+ũ+(t) + c−ũ−(t) = et
(

c+ cos t+ c− sin t
−c+ sin t+ c− cos t

)
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3.5 Elimination for a System of Linear Differ-
ential Equations

Determine the general solution of

u′
1 + 3u1 − 2u2 = 1, 2u1 − u′

2 = 0

using the elimination method.

Resources: Elimination for a Linear System of Differential Equations

Problem Variants

■ 2u′
1 + u2 = 2, u′

2 − 2u1 = 2

u(t) = (c2 cos(t) + c2 sin(t)−?, ?c1 sin(t)−?c2 cos(t)+?):

check

■ u′
1 + 2u1 + u2 = 0, u′

2 − u1 = 1

u(t) = (? + e?t(c1?c1t?c2), ? + e?t(c1t+ c2)):

check

■ u′
1 − u1 − 4u2 = 3, u′

2 − 2u1 + u2 = 0

u(t) = (c1e−?t + c2e?t − 1
?
, ?c1e??t + 1

?
c2e?t − 2

?
):

check
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Solution

Elimination of u1

denoting the differential equations

u′
1 + 3u1 − 2u2 = 1, 2u1 − u′

2 = 0

by E1 and E2, forming the difference d
dtE1 − 2E2 ⇝

(u′′
1 + 3u′

1 − 2u′
2)− (4u1 − 2u′

2) = u′′
1 + 3u′

1 − 4u1 =
d
dt
1− 0 = 0

Solution of the second order equation

characteristic polynomial of u′′
1 + 3u′

1 − 4u1 = 0:

λ2 + 3λ− 4

zeros λ1 = 1, λ2 = −4 ⇝ general solution

u1(t) = c1et + c2e−4t

Computation of u2

solving E1 : u
′
1 + 3u1 − 2u2 = 1 for u2 and substituting the expression for u1

⇝

u2(t) = −1

2
+

3

2
u1(t) +

1

2
u′
1(t)

= −1

2
+

3

2

(
c1et + c2e−4t

)︸ ︷︷ ︸
u1(t)

+
1

2

(
c1et − 4c2e−4t

)︸ ︷︷ ︸
u′
1(t)

= −1

2
+ 2c1et −

1

2
c2e−4t
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3.6 Elimination for a System of Initial Value
Problems

Determine the solution (x(t), y(t))t of the initial value problem

x′ = x+ 2y + e2t, x(0) = 3
y′ = 2x+ y − 2e2t, y(0) = 0

.

Resources: Elimination for a Linear System of Differential Equations

Problem Variants

■ x′ = y + 1, x(0) = 0, y′ = −x+ t, y(0) = 1

x(π) + y(π) =?.??:

check

■ x′ = x+ y + 1, x(0) = 2, y′ = x+ y − 1, y(0) = 0

x(1) + y(1) =??.??:

check

■ x′ = 3x+ 2y + et, x(0) = 0, y′ = −2x− y, y(0) = 0

x(1) + y(1) =?.??:

check
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Solution

Elimination of x(t)

solving the differential equation y′ = 2x + y − 2e2t for x(t) and substituting
the resulting expression

x = y′/2− y/2 + e2t (1)

into the differential equation x′ = x+ 2y + e2t ⇝

y′′/2− y′/2 + 2e2t = y′/2− y/2 + e2t + 2y + e2t

and, after simplification,

y′′ − 2y′ − 3y = 0, y(0) = 0 (2)

Solution of the second order initial value problem

characteristic polynomial of (2)

λ2 − 2λ− 3 = (λ+ 1)(λ− 3)

zeros λ1 = −1, λ2 = 3 ⇝ solution

y(t) = c1e−t + c2e3t = ce−t − ce3t

with c := c1 = −c2 in view of the initial condition y(0) = 0

Computation of x(t)

(1) =⇒

x(t) =
(
−ce−t − 3ce3t

)︸ ︷︷ ︸
y′(t)

/2−
(
ce−t − ce3t

)︸ ︷︷ ︸
y(t)

/2 + e2t

= −ce−t − ce3t + e2t

initial condition x(0) = 3 =⇒ c = −1, i.e.

x(t) = e−t + e3t + e2t, y(t) = −e−t + e3t
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3.7 Field Lines of a Vector Field

Determine the field lines of the vector field F⃗ with the potential U = x2y
and illustrate the orthogonality to the level curves of U .

Resources: Separable Differential Equation

Problem Variants

■ U = xy

implicit representation c = y??x?:

check

■ U = x2 + 2y2

implicit representation y = cx?:

check

■ U = x+ y2

implicit representation y = c???(?x):

check
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Solution

System of differential equations for the field lines

vector field corresponding to the potential U = x2y:

F⃗ = gradU =

(
2xy
x2

)
Since the tangents of the field lines L : t 7→ (x(t), y(t)) are parallel to F⃗ ,

x′ = c (2xy), y′ = c x2 . (1)

Implicit representation of the field lines

dividing the differential equations (1) ⇝

dy
dx

=
dy
dt

/dx
dt

= x2/(2xy) = x/2y ⇐⇒ 2y(x)y′(x) = x

integrating this separable differential equation ⇝ implicit representation
of the field lines:

L(x, y) = y2 − x2/2 = c (hyperbolas)

Level curves of U and field lines

Matlab® graphic

hold on % overlay of plots

% graphic window
xmin = -4; xmax = 4; ymin = -4; ymax = 4;

% grid for evaluating U and L
h = 0.1;
[x,y] = meshgrid(xmin:h:xmax,ymin:h:ymax);

% level curves x^2 y = C
U = x.^2.*y;
contour(x,y,U,10,’Color’,’b’) % 10 blue curves
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% field lines y^2-x^2/2 = C
L = y.^2-x.^2/2;
contour(x,y,L,10,’Color’,’g’) % 10 green lines

axis equal % equal scaling of coordinates

hold off

-4 -2 0 2 4

-4

-2

0

2

4
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3.8 Circular Motion

Solve the initial value problem

u′ = a× u︸ ︷︷ ︸
cross product

=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 u1

u2

u3

 , u(0) = p ,

for a = (2, 1, 2)t, p = (0, 3, 0)t.

Resources: Linear System of Differential Equations

Problem Variants

■ a = (1, 1, 0)t, p = (0, 1, 1)t

u2(π) =?.??:

check

■ a = (3, 0, 4)t, p = (4, 2,−3)t

u2(π) = −?:

check

■ a = (1, 2,−2)t, p = (−2, 2, 1)t

u2(π) = −?:

check
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Solution

General considerations

u′ = a × u, u(0) = p =⇒ The curve t 7→ u(t) traverses a circle
C : |u(t)−m| = r in a plane with normal vector a as is shown below.

(i)
d
dt

(a · u) = a · u′ = a · (a× u) = 0 =⇒

u(t) ∈ E : a · u(t) = a · p

(ii)
d
dt

(u · u) = 2u · u′ = 2u · (a× u) = 0 =⇒

|u(t)| = |p|, φ = ∢(a, u(t)) = arccos
a · u(t)
|a||u(t)|

= arccos
a · p
|a||p|

(i), (ii) =⇒ m = |p| cosφ a

|a|
, r = |p| sinφ

General solution of the differential equation

choose a unit vector b̂ ⊥ â, â = a/|a|
express u in terms of the orthonormal basis â, b̂, ĉ = â× b̂:

u(t) = α(t)â+ β(t)b̂+ γ(t)ĉ
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substituting into the differential equation u′ = a × u and noting that the
cross product of parallel vectors vanishes ⇝

α′â+ β′b̂+ γ′ĉ = |a|â︸︷︷︸
a

×(βb̂+ γĉ) = |a|(βĉ− γb̂)

comparing coefficients of the basis vectors =⇒

α′ = 0, β′ = −|a|γ, γ′ = |a|β

combining the last two equations, β′′ = −|a|2β, and hence

α(t) = d0, β(t) = d1 cos(|a|t)+d2 sin(|a|t), γ(t) = d1 sin(|a|t)−d2 cos(|a|t),

with constants dk determined from the initial conditions

Concrete data

a = (2, 1, 2)t ⇝ possible choice of an orthonormal basis

â =
1

3

 2
1
2

 , b̂ =
1

3

 1
2
−2

 , ĉ =
1

3

 −2
2
1


Substituting into the general solution

u(t) = d0â+ (d1 cos(|a|t) + d2 sin(|a|t)) b̂+ (d1 sin(|a|t)− d2 cos(|a|t)) ĉ

with t = 0, the initial condtion p = (0, 3, 0)t = u(0) implies

p =

 0
3
0

 =
d0
3

 2
1
2

+
d1
3

 1
2
−2

− d2
3

 −2
2
1

 .

formula for the coefficients with respect to an orthonormal basis =⇒

d0 = p · â =

 0
3
0

 ·

 2/3
1/3
2/3

 = 1, d1 = p · b̂ = 2, −d2 = p · b̂ = 2

substituting into the general solution ⇝

u(t) =
1

3

 2
1
2

+
2 cos(3t)− 2 sin(3t)

3

 1
2
−2

+
2 sin(3t) + 2 cos(3t)

3

 −2
2
1


=

1

3

 2− 2 cos(3t)− 6 sin(3t)
1 + 8 cos(3t)

2− 2 cos(3t) + 6 sin(3t)
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3.9 Initial Value Problem in Jordan Form

Determine the solution u(t) of the initial value problem

u′ =

 1 1 0
0 1 1
0 0 1

u, u(0) =

 1
1
1

 .

Resources: Jordan Form of a System of Linear Differential Equations,
Method of Undetermined Coefficients

Problem Variants

■ u′ =

(
1 1
0 1

)
u, u(0) =

(
0
1

)
u1(1) =?.??:

check

■ u′ =

(
−1 1
0 −1

)
u+

(
1
1

)
, u(0) =

(
0
0

)
u1(1) =?.??:

check

■ u′ =

(
3 1
0 3

)
u+

(
3t
0

)
, u(0) =

(
0
3

)
u1(1) =??.??:

check
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Solution

The triangular form of the system of differential equations permits to suc-
cessively determine u3, u2, and u1.

Computation of u3

u′
3 = u3, u3(0) = 1

=⇒ u3(t) = et

Computation of u2

u′
2 = u2 + et︸︷︷︸

u3(t)

, u2(0) = 1 (1)

ansatz (sum of the general solution of the homogeneous differential equation
u′
2 = u2 and a particular solution):

u2(t) = aet + btet

with a = 1 in view of the initial condition and with the factor t in the second
term since et is a solution of the homogeneous differential equation
substituting this ansatz into (1) ⇝

(1 + b+ bt)et = (et + btet) + et ,

i.e. b = 1

Computation of u1

u′
1 = u1 + et + tet︸ ︷︷ ︸

u2(t)

, u1(0) = 1

ansatz
u1(t) = aet + btet + ct2et

with a = 1 in view of the initial condition ⇝

(1 + b+ bt+ 2ct+ ct2)et = (et + btet + ct2et) + (et + tet) ,

i.e. b = 1, c = 1/2
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summarizing:

u(t) =

 1 + t+ t2/2
1 + t
1

 et
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3.10 Trajectories of a Nonlinear Autonomous
System

Determine an implicit representation of the solutions of the system

x′ = x− y3, y′ = x3 − y

in the xy-plane, draw a few trajectories, and mark the equilibrium points.

Resources: Exact Differential Equation, Separable Differential Equation

Problem Variants

■ x′ = 1− y, y′ = 2− x

x? − y?−?x+?y = c:

check

■ x′ = cos y, y′ = sinx

???(x)+???(y) = c:

check

■ x′ = 1− 2y, y′ = 3x2

x? + y?−? = c:

check
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Solution

Equilibrium points

solutions of

x′ = y′ = 0 ⇐⇒ x− y3 = 0 ∧ x3 − y = 0

solving the second equation for y and substituting y = x3 into the first
equation ⇝ x− x9 = 0 with the solutions x = 0,±1
3 equilibrium points: (−1,−1), (0, 0), (1, 1)
Elimination of t

dividing the differential equations x′(t) = x(t)−y(t)3 and y′(t) = x(t)3−y(t)
⇝

dy
dx

=
dy
dt

/dx
dt

=
x3 − y

x− y3

rearranging terms ⇝

(x3 − y) dx + (y3 − x) dy = 0 (1)

exact differential equation since ∂y(x
3 − y) = ∂x(y

3 − x)

Implicit representation F (x, y) = C of the trajectories

exactness of (1) =⇒

∂xF (x, y) = x3 − y, ∂yF (x, y) = y3 − x

integrating the first equation with respect to x =⇒ F (x, y) = x4/4 −
xy + c(y)

substituting into the second equation =⇒ −x + c′(y)
!
= y3 − x, i.e.

c(y) = y4/4 + c̃
choosing1 c̃ = 0,

F (x, y) = x4/4− xy + y4/4

Plot of trajectories with MapleTM

# equilibrium points
pts := [[-1,-1],[0,0],[1,1]]
points := pointplot(pts, symbol=solidcircle,

symbolsize=20, color=green)

1The integration constant c̃ is irrelevant for the implicit representation F (x, y) = C.
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# trajectories
F := x^4/4-x*y+y^4/4
contourplot(F, x=-1.5..1.5, y=-1.5..1.5, contours=20,

color=blue)

# simultaneous plot with font specification
display(points, curves, axesfont=[times,bold,20])
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3.11 Type of a Critical Point of a System of
Differential Equations and General Solu-
tion

Determine the type of the critical point (0, 0) for the system of differential
equations

x′ − x− y = 0, y′ + 4x+ 3y = 0 ,

as well as the general solution.

Resources: Stability of Linear Systems of Differential Equations, Elimi-
nation for a Linear System of Differential Equations

Problem Variants

■ x′ = 2x+ 3y, y′ = 3x+ y

stable (s) or unstable (u), knot (k) or saddle (s) ?, ?:

check

■ x′ = −2x+ y, y′ = −x− 2y

stable (s) or unstable (u), knot (k) or spiral (s) ?, ?:

check

■ x′ = −5y, y′ = 2x+ 2y

stable (s) or unstable (u), knot (k) or spiral (s) ?, ?:

check
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Solution

Matrix form of the system of differential equations

x′ − x− y = 0, y′ + 4x+ 3y = 0 ⇝(
x′

y′

)
=

(
1 1
−4 −3

)
︸ ︷︷ ︸

A

(
x
y

)

Classification of the critical point (0, 0)

• detA = 1 > 0, traceA = −2 < 0 =⇒ stable

• detA ≤ ((traceA)/2)2 =⇒ knot (degenerate since the two terms
are equal)

Construction of the general solution with the elimination technique(
d
dt

− 1

)
(y′ + 4x+ 3y = 0)︸ ︷︷ ︸

equation 2

−4 (x′ − x− y = 0)︸ ︷︷ ︸
equation 1

⇝

(y′′ − y′ + 4x′ − 4x+ 3y′ − 3y)− (4x′ − 4x− 4y) = y′′ + 2y′ + y = 0

characteristic polynomial: λ2 + 2λ+ 1 = (λ+ 1)2

double zero λ = −1 ⇝

y(t) = (c1 + c2t)e−t

substituting into equation 2: y′ + 4x+ 3y = 0 ⇝

x(t) = −1

4
(y′ + 3y) = −1

4

(
(−c1 + c2 − c2t)e−t + 3(c1 + c2t)e−t

)
= (−(c2/2)t− c1/2− c2/4)e−t
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3.12 Stable Critical Points of a Nonlinear Sys-
tem of Differential Equations

Determine the stable critical points of

u′ = −u3 + v, v′ = −v3 + w, w′ = −w3 + u .

Resources: Stability of Autonomous Systems of Differential Equations

Problem Variants

■ u′ = u(v − 1), v′ = v(u− 1)

stable critical point (?, ?):

check

■ u′ = u(3− v), v′ = v(1 + u− v)

stable critical point (?, ?):

check

■ u′ = v, v′ = u− u3 + v

stable critical point (?, ?):

check
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Solution

Critical Points

nonlinear system of differential equations u′

v′

w′

 = F (u, v, w), F (u, v, w) =

 −u3 + v
−v3 + w
−w3 + u


F (u, v, w) = (0, 0, 0)t for a critical point p = (u, v, w) ⇐⇒

v = u3, w = v3 = u9, u = w3 = u27 ,

i.e. u ∈ {−1, 0, 1}, corresponding to three critical points: p0 = (0, 0, 0),
p+ = (1, 1, 1), p− = (−1,−1,−1)

Stability criteria

characterization of stability for a point p = (u, v, w)t in terms of the eigen-
values λk of the Jacobi matrix

F ′(p) =

 −3u2 1 0
0 −3v2 1
1 0 −3w2


sufficient criteria:

• stable, if Reλk < 0∀k

• unstable, if ∃λk : Reλk > 0

Application to the three critical points

• p0 = (0, 0, 0)

F ′(0, 0, 0) =

 0 1 0
0 0 1
1 0 0


has eigenvalue 1 corresponding to the eigenvector (1, 1, 1)t and hence
p0 is unstable

• p± = ±(1, 1, 1)

F ′(u, v, w) =

 −3 1 0
0 −3 1
1 0 −3


criterion of Gerschgorin for the eigenvalues λ =⇒ |λ− (−3)| ≤ 1
=⇒ Reλ < 0 =⇒ stability of p±
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3.13 Linear Systems of Differential Equations
with Matlab®

Solve the initial value problem u′ = Au, u(0) = b with

A =

 1 2 2
−2 −3 2
−4 −4 −1

 , b =

 1
−1
4

 ,

and plot the projections of the curve t 7→ u(t), t ∈ [0, 10], on the u1u2-, u1u3-,
and u2u3-plane.

Resources: Diagonalization of a Linear System of Differential Equations

Problem Variants

■ A =

 −2 1 0
1 −2 1
0 1 −2

 , b =

 0
1
0

, curve in the u1u3-plane

104u2(10) =??:

check

■ A =

(
−1 −3
3 −1

)
, b =

(
1
2

)
, curve in the u1u2-plane

104u1(10) =?.??:

check

■ A =


−1 1 3 0
1 −2 0 4
−3 0 −1 0
0 −4 0 2

 , b =


1
1
1
1

, curve in the u1u4-plane

104u1(10) =?.??:

check
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Solution

Diagonalization of the initial value problem

particular solution of u′ = Au:

u(t) = veλt

with v an eigenvector for an eigenvalue λ of A

For a basis of eigenvectors vk, a general solution of the system of differential
equations can be written as linear combination of eigensolutions:

u(t) =
3∑

k=1

ckvkeλkt .

initial condition b = u(0) =
∑

k ckvk =⇒

c = V −1b, V = (v1, v2, v3) =:

 v1,1 · · · v1,3
...

...
v3,1 · · · v3,3


values of the solution components uj at time tℓ

uj(tℓ) =
∑
k

ckvj,k︸ ︷︷ ︸
wj,k

eλktℓ︸︷︷︸
ek,ℓ

=: (WE)j,ℓ

Matlab® script

A = [1 2 2; -2 -3 2; -4 -4 -1]; b = [1;-1;4];
% eigenvectors and diagonal matrix of eigenvalues
[V,Lambda] = eig(A)
V = -0.3536-0.3536i -0.3536+0.3536i 0.7071+0.0000i

0.3536-0.3536i 0.3536+0.3536i -0.7071+0.0000i
0.7071+0.0000i 0.7071+0.0000i 0.0000+0.0000i

Lambda = -1.0+4.0i 0.0 0.0
0.0 -1.0-4.0i 0.0
0.0 0.0 -1.0

% solution of the linear system resulting from the initial value
% scaling of the columns of V -> W = (w^1,w^2,w^3)
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c = V\b, W = V*diag(c)
c = 2.8284 W = -1.0-1.0i -1.0+1.0i 3

2.8284 1.0-1.0i 1.0+1.0i -3
4.2426 2.0 2.0 0

solution uj(t) =
∑3

k=1wj,k eλkt, i.e.

u(t) =

 −1− i
1− i
2

 e(−1+4i)t +

 −1 + i
1 + i
2

 e(−1−4i)t +

 3
−3
0

 e−t

= e−t

 −2 cos(4t) + 2 sin(4t) + 3
2 cos(4t) + 2 sin(4t)− 3

4 cos(4t)



Plot of the projections on the coordinate planes

dt = 0.01; T = [0:dt:10];
E = exp(diag(Lambda)*T);
uT = W*E;
% suppress imaginary parts due to rounding errors
uT = real(uT);

subplot(1,3,1) % left image
plot(uT(1,:),uT(2,:))
subplot(1,3,2) % middle image
plot(uT(1,:),uT(3,:))
subplot(1,3,3) % right image
plot(uT(2,:),uT(3,:))

0 2 4

-2

-1

0

0 2 4

-2

0

2

4

-2 -1 0

-2

0

2

4
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Chapter 4

Laplace Transform
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4.1 Laplace Transform of Exponential, Sine, and
Cosine

Determine the Laplace transform U(s) of the function u(t) = e2t cos2 t.

Resources: Laplace Transform of Exponential Functions

Problem Variants

■ u(t) = e−3t cos t sin t

U(1) =?.??:

check

■ u(t) = sinh(2t) cos(3t)

U(3) = −?.???:

check

■ u(t) = sin(t)2 + 2t

U(2) =?.?:

check
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Solution

Simplification

cos(2t) = cos2 t− sin2 t = 2 cos2 t− 1 ⇝

cos2 t =
1

2
+

1

2
cos(2t)

Laplace transform of the elementary terms

using the formula

eλt cos(ωt) L−→ s− λ

(s− λ)2 + ω2

with λ = 2, ω = 0 and λ = 2, ω = 2 ⇝

u(t) = e2t cos2 t =
1

2
e2t +

1

2
e2t cos(2t)

L−→

U(s) =
1

2(s− 2)
+

s− 2

2((s− 2)2 + 4)
=

s2 − 4s+ 6

(s− 2)((s− 2)2 + 4)

Verification with MapleTM

# load the package for integral transforms
with(inttrans)
# compute the Laplace transform
u := exp(2*t)*cos(t)^2
U := laplace(u,t,s)
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4.2 Laplace Transform of a Polynomial and an
Exponential

Determine the Laplace transform U(s) of the function u(t) = (t+ e−3t)2.

Resources: Laplace Transform of Exponential Functions

Problem Variants

■ u(t) = t2 cosh(3t)

U(4) =?.???:

check

■ u(t) = (2 + t exp(t/2))2

U(2) =?.??:

check

■ u(t) = (t+ sinh t)3

U(4) =?.??:

check
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Solution

Simplification

binomial theorem ⇝

u(t) = (t+ e−3t)2 = t2 + 2te−3t + e−6t

Laplace transform of the elementary terms

applying the formula

tneλt L−→ n!

(s− λ)n+1

with n = 2, λ = 0, n = 1, λ = −3 and n = 0, λ = −6 ⇝

U(s) =
2

s3
+

2

(s+ 3)2
+

1

s+ 6

114



4.3 Rules for Laplace Transforms

Determine the Laplace transform U(s) of the function u(t) = t sin(2t)e3t.

Resources: Laplace Transform of Exponential Functions, Differentiation
and Integration of Laplace Transforms

Problem Variants

■ u(t) = t2 cos(t)2

U(1) =?.???:

check

■ u(t) =
d
dt
(exp(−3t) sin(2t))

U(1) =?.?:

check

■ u(t) = t
d
dt
(sin t cosh t)

U(2) =?.??:

check
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Solution

Laplace transform of the elementary term

applying the formula

eλt sin(ωt) L−→ ω

(s− λ)2 + ω2

with λ = 2, ω = 3 ⇝

v(t) = e2t sin(3t) L−→ 3

(s− 2)2 + 9
= V (t)

Multiplication with t

applying the transformation rule

tv(t)
L−→ − d

ds
V (s)

to u(t) = t e2t sin(3t)︸ ︷︷ ︸
v(t)

⇝

U(s) = − d
ds

3

(s− 2)2 + 9
=

6(s− 2)

((s− 2)2 + 9)2
=

6s− 12

((s− 2)2 + 9)2
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4.4 Inverse Laplace Transform of a Rational
Function

Determine the inverse Laplace transform u(t) of the function

U(s) =
s2 + s+ 1

s3 − s2 + s− 1
.

Resources: Laplace Transform of Exponential Functions

Problem Variants

■ U(s) =
1 + 3s

s2 − 4

u(1) =??.??:

check

■ U(s) =
1

s3 − 4s2

u(1) =?.??:

check

■ U(s) =
1 + s2

4s− s3

u(1) = −?.??:

check
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Solution

Partial fraction decomposition

factoring the denominator of U(s), s3 − s2 + s − 1 = (s2 + 1)(s − 1) ⇝
ansatz

U(s) =
s2 + s+ 1

s3 − s2 + s− 1
=

c

s− 1
+

as+ b

s2 + 1

for a partial fraction decomposition of U

• multiplying with s− 1 and setting s = 1 =⇒ c = 3/2

• subtracting the term (3/2)/(s− 1) ⇝

as+ b

s2 + 1
=

s2 + s+ 1

(s2 + 1)(s− 1)
− (3/2)(s2 + 1)

(s2 + 1)(s− 1)

=
−(s2 − 2s+ 1)/2

(s2 + 1)(s− 1)
=

−s/2 + 1/2

s2 + 1
,

i.e. a = −1/2, b = 1/2

Inverse Laplace transform of the elementary terms

applying the formulas

n!

(s− λ)n+1

L−1

−→ tneλt,
a(s− λ) + bω

(s− λ)2 + ω2

L−1

−→ eλt(a cos(ωt)+ b sin(ωt))

with n = 0, λ = 1 and λ = 0, ω = 1 ⇝

U(s) =
3/2

s− 1
+

−s/2 + 1/2

s2 + 1

L−1

−→ u(t) =
3

2
et − 1

2
cos t+

1

2
sin t

Verification with MapleTM

# loading the package for integral transforms
with(inttrans)
# computing the inverse transform
U := (s^2+s+1)/(s^3-s^2+s-1)
u := invlaplace(U,s,t)
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4.5 Laplace Transform of a Periodic Function

Determine the Laplace transform U(s) of the function u(t) = | sin t|.

Resources: Laplace Transform of Periodic Functions

Problem Variants

■ 1-periodic extension of u(t) = t, 0 ≤ t < 1

U(1) =?.??:

check

■ 2-periodic extension of u(t) = t(2− t), 0 ≤ t < 2

U(1) =?.??:

check

■ 2π-periodic extension of u(t) = sign sin t, 0 ≤ t < 2π

U(1) =?.??:

check
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Solution

Laplace transform of the truncated function

Laplace transform of v = uχ with χ the characteristic function of [0, π] and
u(t) = | sin t| ⇝

V (s) =

∫ π

0

sin t e−st dt =
[
− sin t

e−st

s

]t=π

t=0︸ ︷︷ ︸
=0

+

∫ π

0

cos t
e−st

s
dt

=

[
− cos t

e−st

s2

]t=π

t=0

−
∫ π

0

sin t
e−st

s2
dt =

e−sπ + 1

s2
− V (s)/s2

solving for V (s) ⇝

V (s) =
e−sπ + 1

s2

/
(1 + 1/s2) =

e−sπ + 1

s2 + 1

Laplace transform of the π-periodic extension u of v

substituting the expression for the Laplace transform V into the formula

U(s) =
1

1− e−Ts
V (s)

for T -periodic functions with T = π ⇝

U(s) =
1 + e−πs

(1− e−πs)(s2 + 1)

120



4.6 Laplace Transform of an Integral Equation

Determine the solution u(t) of the integral equation

u(t) +

∫ t

0

e2(t−τ)u(τ) dτ = t .

Resources: Convolution and Laplace Transforms, Laplace Transform of
Exponential Functions

Problem Variants

■ u(t)−
∫ t

0
(t− τ)u(τ) dτ = 1

u(0) =?:

check

■ u(t)−
∫ t

0
2 cos(t− τ)u(τ) dτ = sin t

u(1) =?.??:

check

■ u(t)−
∫ t

0
u(τ) dτ = exp(3t)

u(0) =?:

check
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Solution

Laplace transform of the integral equation

v(t) =

∫ t

0

f(t− τ)u(τ) dτ︸ ︷︷ ︸
(f⋆u)(t)

L−→ V (s) = F (s)U(s)

with f(t) = e2t and tn eλt L−→ n!

(s− λ)n+1
⇝

u(t) +

∫ t

0

e2(t−τ)u(τ) dτ = t
L−→ U(s) +

1

s− 2
U(s) =

1

s2
,

i.e. U(s) =
s− 2

s2(s− 1)

Partial fraction decomposition

ansatz
U(s) =

s− 2

s2(s− 1)
=

a

s2
+

b

s
+

c

s− 1

• multiplying with s2 and setting s = 0 =⇒ a = 2

• multiplying with s− 1 and setting s = 1 =⇒ c = −1

• setting s = −1 =⇒ 3/2 = 2− b+ 1/2, i.e. b = 1

Inverse Laplace transform

applying the formula
n!

(s− λ)n+1

L−1

−→ tneλt

with n = 1, λ = 0, n = 0, λ = 0, and n = 0, λ = 1 ⇝

U(s) =
2

s2
+

1

s
− 1

s− 1

L−1

−→ u(t) = 2t+ 1− et
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4.7 Laplace Transform of a First Order Initial
Value Problem

Determine the solution u(t) of the initial value problem

u′ + 3u = e−t sin(2t), u(0) = 4 ,

using Laplace transforms.

Resources: Laplace Transform of Linear First Order Differential Equations

Problem Variants

■ u′ − 2u = sin(t)2, u(0) = 2

u(1) =??.??:

check

■ u′ + u = exp(−t), u(0) = 1

u(1) =?.??:

check

■ u′ − 3u = 3t2, u(0) = 3

u(1) =??.??:

check
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Solution

Laplace transform of the differential equation

applying the formulas

u′(t)
L−→ sU(s)− u(0), eλt sin(ωt) L−→ ω

(s− λ)2 + ω2

with u(0) = 4, λ = −1, ω = 2 ⇝

u′ + 3u = e−t sin(2t)
L−→ sU(s)− 4 + 3U(s) =

2

(s+ 1)2 + 4

i.e.
U(s) =

4

s+ 3
+

2

((s+ 1)2 + 4)(s+ 3)︸ ︷︷ ︸
V (s)

Partial fraction decomposition

ansatz
V (s) =

2

((s+ 1)2 + 4)(s+ 3)
=

a

s+ 3
+

bs+ c

(s+ 1)2 + 4

• multiplying with s+ 3 and setting s = −3 =⇒ a = 1/4

• subtracting the term (1/4)/(s+ 3) ⇝

2

((s+ 1)2 + 4)(s+ 3)
− ((s+ 1)2 + 4)/4

((s+ 1)2 + 4)(s+ 3)

=
−s2/4− s/2 + 3/4

((s+ 1)2 + 4)(s+ 3)
=

−s/4 + 1/4

(s+ 1)2 + 4

⇝ U(s) =
4

s+ 3
+ V (s) =

17/4

s+ 3
+

−(s+ 1)/4 + 2/4

(s+ 1)2 + 4

Inverse Laplace transform

applying the formulas
1

s− λ

L−1

−→ eλt,
s− λ

(s− λ)2 + ω2

L−1

−→ eλt cos(ωt),
ω

(s− λ)2 + ω2

L−1

−→ eλt sin(ωt)

with λ = −3 and λ = −1, ω = 2 ⇝

u(t) =
17

4
e−3t − 1

4
e−t cos(2t) +

1

4
e−t sin(2t)
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Verification with MapleTM

dsolve({diff(u(t),t)+3*u(t)=exp(-t)*sin(2*t),u(0)=4})
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4.8 Laplace Transform of a Second Order Ini-
tial Value Problem

Determine the solution u(t) of the initial value problem

u′′ − 6u′ + 9u = 0, u(0) = 2, u′(0) = −3

using Laplace transforms.

Resources: Laplace Transform of Linear Second Order Differential Equa-
tions

Problem Variants

■ u′′ + 4u = cos t, u(0) = 2, u′(0) = 2

u(1) =?.??:

check

■ u′′ + 2u′ + u = sin t, u(0) = 0, u′(0) = 0

u(1) =?.???:

check

■ u′′ + u′ − 2u = 3t exp t, u(0) = 0, u′(0) = 1

u(1) =?.??:

check
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Solution

Laplace transform of the differential equation

applying the formulas

u′(t)
L−→ sU(s)− u(0), u′′(t)

L−→ s2U(s)− su(0)− u′(0)

to the initial value problem u′′ − 6u′ + 9u = 0, u(0) = 2, u′(0) = −3 ⇝

(s2U(s)− 2s+ 3)− 6(sU(s)− 2) + 9U(s) = 0 ,

i.e. U(s) =
2s− 15

s2 − 6s+ 9

Partial fraction decomposition

U(s) =
2s− 15

s2 − 6s+ 9
=

2(s− 3)− 9

(s− 3)2
=

2

s− 3
− 9

(s− 3)2

Inverse Laplace transform

application of the formula

tneλt L−→ n!

(s− λ)n+1

with λ = 3 and n = 0, 1 ⇝ inverse Laplace transform

u(t) = 2e3t − 9te3t

Verification with MapleTM

de := diff(u(t),t$2)-6*diff(u(t),t)+9*u(t)=0
ic := u(0)=2, D(u)(0)=-3
dsolve({de,ic})
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Chapter 5

Calculus Highlights
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5.1 Chasing Pirates

Continuously heading for the target, a navy speedboat is in pursuit of a
freighter, which is sailing north at 20 knots under a black flag1. After how
many minutes does the speedboat catch up with the freighter, if it sails twice
as fast and has started 10 kilometers east of the freighter?

Resources: Separable Differential Equation

1a classical pursuit problem, studied already by Pierre Bouguer in the eighteenth cen-
tury
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Solution

Differential equation for the path of the speedboat

parametrization of the path: t 7→ (x(t), y(t)), y(t) = f(x(t))

(x′(t), y′(t)) points towards the position (0, vt) of the freighter =⇒

f ′(x) =
y − vt

x− 0
i.e. f ′(x(t))x(t) + vt = f(x(t))

differentiating with respect to t, using the “dot-notation” =⇒

f ′′(x)ẋx+ f ′(x)ẋ+ v = f ′(x)ẋ bzw. f ′′(x)ẋx = −v

constant velocity 2v of the speedboat, y(t) = f(x(t)) =⇒

2v =
√

ẋ2 + ẏ2 =
√

ẋ2 + (f ′(x)ẋ)2 = −ẋ
√

1 + f ′(x)2

The minus sign is necessary in view of the north-east route of the speedboat.
solving for ẋ and substituting into the differential equation f ′′(x)ẋx = −v
⇝

f ′′(x)√
1 + f ′(x)2

=
1

2x

with the initial values

• f(10) = 0 (starting position 10 kilometers east of the freighter)

• f ′(10) = 0 (route of the speedboat initially west)
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Solution of the initial value problem

substituting g = f ′ ⇝ separable differential equation for g(x),

dg√
1 + g2

=
dx
2x

, dg = g′(x) dx ,

which can be integrated explicitly:∫
dg√
1 + g2

=

∫
dx
2x

⇝ arcsinh(g) = ln(g +
√

1 + g2) =
1

2
lnx+ C

initial value g(10) = f ′(10) = 0 =⇒

ln(0 +
√
1 + 0)︸ ︷︷ ︸

=0

=
1

2
ln 10 + C, i.e.C = −1

2
ln 10

solving for g, 1
2
lnx− 1

2
ln 10 = ln(

√
x/

√
10) ⇝

g +
√

1 + g2 =
√
x/

√
10 ⇐⇒ (1 + g2) = (

√
x/

√
10− g)2

⇐⇒ g =
1

2
√
10

x1/2 −
√
10

2
x−1/2

integrating ⇝

f(x) =

∫
g(x) dx =

1

3
√
10

x3/2 −
√
10x1/2 + C̃

initial value f(10) = 0 =⇒

10

3
− 10 + C̃ = 0, i.e. C̃ = 20/3

Time of pursuit T

The speedboat reaches the freighter at position (0, f(0)) = (0, 20/3), i.e. after
a distance of 6.666 km, travelled by the freighter.
20 knots =̂ 37.04 km/h =⇒

T =
6.666km

37.04km/h
= 0.1800 h ≈ 11minutes
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5.2 Acceleration of a Sports Car

One of the newer models of the classic Porsche 911 reaches the velocity v⋆ =
300 km/h in t⋆ ≈ 27s. Neglecting friction, determine the average accelerating
force F by solving the differential equation

mv′ = F − c v2, v(0) = 0 ,

with m = 1715 kg the weight of the car and a driver, v(t) its velocity, and
c ≈ 0.50 the coefficient in a simplified model of air resistance2.

Resources: Separable Differential Equation

2c = 1
2cdAϱ with cd = 0.33 the drag coefficient of the car, A = 1.303 · 1.900m2 its cross

sectional area, and ϱ = 1.225 kg/m3 the air density
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Solution

Solution of the initial value problem

The differential equation is separable:
m

F − cv2
v′ = 1 .

partial fraction decomposition ⇝

m

2
√
F

(
1√

F +
√
c v

+
1√

F −
√
c v

)
v′ = 1

integrating, using
∫ dv

p+qv
= ln |p+qv|

q
⇝

m

2
√
F

(
ln |

√
F +

√
c v|√

c
− ln |

√
F −

√
c v|√

c

)
= t+ C

and, after simplification,
√
F +

√
c v√

F −
√
c v

= e2
√
cF (t+C)/m, F > cv2

substituting the initial value v(0) = 0 =⇒ C = 0

abbreviating E := e2
√
cF t/m and solving for v ⇝

√
F +

√
c v = E

√
F − E

√
c v ⇐⇒ v =

E
√
F −

√
F

E
√
c+

√
c

=
E − 1

E + 1

√
F√
c
,

i.e.

v(t) =
e2

√
cF t/m − 1

e2
√
cF t/m + 1

√
F√
c
=

et
√
cF/m − e−t

√
cF/m

et
√
cF/m + e−t

√
cF/m

√
F/c

= tanh(t
√
cF/m)

√
F/c

Computation of the accelerating force

converting km/h to m/s and using MapleTM to solve the equation v(t⋆) = v⋆
⇝

c := 0.50; m := 1715; t300 := 27; v300 := 300*1000/3600;
F := fsolve(v300 = tanh(t300*sqrt(c*F)/m)*sqrt(F/c),F)

F ≈ 6678Newton
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5.3 Periodic Orbit or Journey of no Return?

After an “almost collision” of two space ships, which both are out of fuel,
the crews, rightfully extremely worried, are asking: “What will be our future
flight path? Will we leave our solar system?” To give a reliable answer, solve
the differential equation3

d2

dφ2

1

r(φ)
+

1

r(φ)
= C := GM/|r(0) · vy|2

for the distance r from the sun as a function of the trajectory angle φ (polar
coordinates) and the flight data

distance r(0) to the sun velocity (vx, vy)
t

space ship A 3 · 1011 m (−1, 2)t · 104 m/s
space ship B 3 · 1011 m (−2,−4)t · 104 m/s

at the time (φ = 0) of the “almost collision”. Use the rounded values G =
7 ·10−11 m3

kg s2 and M = 2 ·1030 kg for the gravitational constant and the mass
of the sun.

Resources: Method of Undetermined Coefficients

3a consequence of Newton’s laws of motion
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Solution

Initial values for q(φ) = 1/r(φ)

representation of position and velocity with polar coordinates:

p(t) = r(φ(t))

(
cosφ(t)
sinφ(t)

)
p′(t) = r′(φ(t))φ′(t)

(
cosφ(t)
sinφ(t)

)
+ r(φ(t))

(
− sinφ(t)
cosφ(t)

)
φ′(t)

substituting φ(0) = 0, p(0) = (r(0), 0)t and p′(0) = (vx, vy)
t ⇝(

vx
vy

)
= r′(0)φ′(0)

(
1
0

)
+ r(0)

(
0
1

)
φ′(0) ,

i.e. φ′(0) = vy/r(0), r′(0) = vx/φ
′(0) = vxr(0)/vy

derivative of the reciprocal of the distance to the sun:

q′(0) =
d
dφ

1

r(φ)

∣∣∣∣
φ=0

= − r′(0)

r(0)2
= − vx

vyr(0)

Solution of the initial value problem for q

q′′ + q = C =⇒

q(φ) = C + c1 cosφ+ c2 sinφ = C +D cos(φ− δ), C,D > 0 ,

i.e. q parametrizes a conic section (C > D: ellipse, C = D: parabola, C < D:
hyperbola)
substituting the initial values ⇝

1/r(0)− C = q(0)− C = D cos δ, − vx
vyr(0)

= q′(0) = D sin δ

and, using cos2 δ + sin2 δ = 1, tan δ = sin δ/ cos δ,

D =

√(
1

r(0)
− C

)2

+

(
vx

vyr(0)

)2

, tan δ =
q′(0)

q(0)− C
= − vx

vy(1− Cr(0))
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Solution for the given data

Computation without units, r and v measured in m and m/s, respectively

• space ship A: r(0) = 3 · 1011, vx = −1 · 104, vy = 2 · 104

C = GM/|r(0) · vy|2 = 7 · 10−11 · 2 · 1030/(3 · 1011 · 2 · 104)2

=
7

18
· 10−11 ≈ 0.3889 · 10−11

D =
√
((1/3) · 10−11 − (7/18) · 10−11)2 + (−104/(2 · 104 · 3 · 1011))2

=
√

(−1/18)2 + (−1/6)2 · 10−11 =

√
10

18
· 10−11 ≈ 0.1757 · 10−11

tan δ = − −104

2 · 104(1− (7/18) · 10−11 · 3 · 1011)
= −3, δ ≈ 1.8925

• space ship B: r(0) = 3 · 1011, vx = −2 · 104, vy = −4 · 104
analogous computation ⇝

C =
7

72
· 10−11 ≈ 0.0972 · 10−11, D =

√
433

72
· 10−11 ≈ 0.2890 · 10−11 ,

and tan δ = −12
17

, δ ≈ −0.6147

Trajectories of the space ships

The figure shows (coordinates
in m, initial velocities strongly
magnified):
The trajectory of A is an el-
lipse a (D < C), the trajectory
of B a hyperbola (D > C) with
r(φ) → ∞ (no return to our
solar system).

aKepler’s first law
-4 -2 0 2 4

10
11

-6

-4

-2

0

2

4
10

11
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5.4 Electrical Circuit with Matlab®

The current I of the electrical circuit shown below satisfies the differential
equation

LI ′′ +RI ′ +
1

C
I = Uω cos(ωt) .

Write a Matlab® program which plots I(t), 0 ≤ ωt ≤ 10π, for the initial
conditions I(0) = I ′(0) = 0, the data U = 220V, ω = 50 s−1, and the values
of

ωL, R,
1

ωC
∈ [10, 200] Ω ,

which can be specified interactively via sliders in a graphics window.

Resources: Forced Damped Oscillations, Differential Equations with Mat-
lab

137



Solution

Solution of the differential equation

An exact solution is possible; but, in view of its simplicity, a numerical
method is preferred for the Matlab® program.

formulating LI ′′+RI ′+ 1
C
I = Uω cos(ωt) as a first order system for (y1, y2) =

(I, I ′) ⇝

y′1 = y2, y′2 = −(R/L)y2 − (1/(CL))y1 + (U/L)ω cos(ωt)

⇝ application of standard numerical solvers such as the Matlab® func-
tion ode45.

Matlab® function for simulating the electrical circuit

function electric_circuit()

% initialization
global ui_data plot_handle U omega R C L

ui_data = []; plot_handle = [];
U = 220; omega = 50;
R = 100; C = 1/(100*omega); L = 100/omega;

% initialize the graphics user interface (GUI)

clf; % create a figure

% text field in the normalized window [0,1]^2
% positioned at (.5,.85) with width .3 and height .05
% prints the current value of R rounded to the next integer
% returns the ui control object
ui_data(1) = uicontrol(...

’Units’,’normalized’, ...
’HorizontalAlignment’,’left’, ...
’Position’,[.5,.85,.3,.05],...
’String’,[sprintf(’R=%d’,round(R)) ’ Ohm’],...
’FontSize’,15,...
’Style’,’text’);
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% slider for R with range [10,200]
% invokes the function slider_update upon user input
ui_data(2) = uicontrol(...

’Units’,’normalized’, ...
’Position’,[.05,.85,.4,.05], ...
’Min’,10,’Max’,200,’Value’,R,...
’Callback’,@slider_update,...
’Style’,’slider’);

% analogous text fields and sliders for 1/(wC) and wL
...

% display the current for the default values
plot_current
end

% callback function
function slider_update(varargin)
global ui_data plot_handle U omega R C L

% read the value of R
% stored in the field .Value of the object ui_data(2)
R = get(ui_data(2),’Value’);
% update the text field, i.e. the object ui_data(1)
set(ui_data(1),’String’,sprintf(’R=%d’,round(R)));

% analogous updates for C and L
...

% update the plot of the current
plot_current;

end

% plot of the current
function plot_current
global ui_data plot_handle U omega R C L

% solution of the differential equation for the current I
% y = (I,dI/dt)
f = @(t,y) [y(2); -(R/L)*y(2)-(1/(C*L))*y(1)+(U/L)*omega*cos(omega*t)];
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[T,Y] = ode45(f,[0 2*pi*10/omega],[0; 0]);
% Y(k,1) = I(T(k))

% delete the existing plot
delete(plot_handle)
% specify the plot window inside the gui figure
plot_handle = axes(’Position’,[0.1 0.2 0.8 0.4]);

% plot I as a function of omega*t
plot(omega*T,Y(:,1),’LineWidth’,3)
xlabel(’wt’); ylabel(’I’);
axis tight

end

Graphical user interface with plot of the current for the default parameters

0 10 20 30 40 50 60

wt

-2

-1

0

1

2

I

R=100 Ohm

1/(wC)=100 Ohm

wL=100 Ohm

It is instructive to consider the extreme cases with slider values equal to 10Ω
or 200Ω.
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5.5 Roller Coaster Ride with Matlab®

Visualize the first 10 seconds of a ride on the roller coaster which is modelled
by the height function

h(x) = 10 cos2(x/20)e−x/50, x ≥ 0

(units: meters and seconds [m/s]). To this end mark the positions of the
wagon on the graph of h in intervals of 0.5 seconds. Assume that the start
velocity v0 equals 0.1m/s and neglect friction4. Moreover, determine the
maximal velocity.

Resources: Differential Equations with Matlab, Conservation of Energy

4More realistic (but also more complicated . . .) is a three dimensional trajectory of a
roller coaster containing loops - an incentive to study the relevant mathematics in more
detail!
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Solution

Differential equation for the position (x(t), y(t)) of the wagon

total energy (sum of kinetic and potential energy):

E(t) = mgh(x(t)) +
m

2
|v(t)|2

with g = 9.81m/s2 (gravity), v(t) = (x′(t), y′(t)) [m/s] the velocity, and m
[kg] the mass of the wagon
invariance of E =⇒ E(t) = E(0), i.e.

(E) mgh(x(t)) +
m

2
|v(t)|2 = mgh(x(0)︸︷︷︸

=0

) +
m

2
v20

v ∥ tangent of h =⇒ h′(x(t)) = y′(t)/x′(t) and hence

|v(t)|2 = x′(t)2 + y′(t)2 = x′(t)2(1 + h′(x(t))2)

substituting into (E) and dividing by m ⇝

gh(x(t)) +
1

2
x′(t)2(1 + h′(x(t))2) = gh0 +

1

2
v20

with h0 = h(0) = 10
solving for x′ ⇝

x′ = ±
√
(2gh0 + v20 − 2gh(x))/(1 + h′(x)2)

Only the positive root is relevant - you do not want to ride backwards on a
roller coaster!

Matlab® script

% parameter
g = 9.81; tmax = 10; dt = 0.5; x0 = 0; v0 = 0.1;

% height function, describing the roller coaster geometry
h = @(x) 10*cos(x/20).^2.*exp(-x/50);
h0 = h(0);

% derivative (after simplification)
dh = @(x) (-cos(x/20).*sin(x/20)-cos(x/20).^2/5).*exp(-x/50);
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% right-hand side of the differential equation
dx = @(t,x) sqrt((2*g*h0+v0^2-2*g*h(x))./(1+dh(x).^2));
% There is no explicit t-dependence;
% but the variable t is required by the Matlab-syntax.

% solution of the initial value problem
[t,x] = ode45(dx,[0:dt:tmax],x0);
% -> t = [0 dt 2*dt ...], x = [x(0) x(dt) x(2*dt) ...]

% graph of the height function with wagon positions
hold on
plot(x,h(x),’ok’);
x = linspace(0,xmax); plot(x,h(x),’-k’);
hold off

0 50 100
0

5

10

15

The figure also shows the velocity which, however, was not computed with
the above program segment.

Maximal velocity

In view of the invariance of energy (equation (E)), |v| = x′
√
1 + h′(x)2 is

maximal at the minima x⋆ of h, i.e. for h(x⋆) = 0 (x⋆/20 = π/2, 3π/2, . . .).
Hence, setting x(t) = x⋆ in (E), dividing by m/2, and taking the square root

vmax =
√
2gh0 + v20 ≈

√
2 · 9.81 · 10 + 0.12 m/s ≈ 4.0075m/s .
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5.6 Oscillation of Coupled Springs

The differential equations

x′′ = −(α + β)x+ βy

y′′ = βx− (β + γ)y

model the oscillation of three coupled springs with spring constants α, β, and
γ.

Determine the elongations x(t) and y(t) of the two discs from the equilibrium
positions (gray discs) for α = γ = 1, β = 2 and the initial values x(0) = 1,
y(0) = 2, x′(0) = y′(0) = 0 .

Resources: Diagonalization of a Linear System of Differential Equations,
Linear Oscillator
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Solution

Matrix form of the system of differential equations(
x′′

y′′

)
=

(
−3 2
2 −3

)
︸ ︷︷ ︸

A

(
x
y

)
︸ ︷︷ ︸

Z

Diagonalization

transformation of Z ′′ = AZ to diagonal form with the matrix

V =
1√
2

(
1 −1
1 1

)
of eigenvectors of A

substituting Z = V Z̃ ⇝ decoupled system

(V Z̃)′′ = A(V Z̃) ⇐⇒ Z̃ ′′ = V tAV︸ ︷︷ ︸
Λ

Z̃

(V t = V −1 since V is orthogonal) with

Λ =

(
−1 0
0 −5

)
the diagonal matrix of eigenvalues of A, i.e.

z̃′′1 = −z̃1, z̃′′2 = −5z̃2

general solution of the decoupled system

z̃1(t) = c1,1 cos t+ c1,2 sin t

z̃2(t) = c2,1 cos(
√
5 t) + c2,2 sin(

√
5 t)

Initial values

Z(0) = (x(0), y(0))t = (1, 2)t, Z ′(0) = (x′(0), y′(0))t = (0, 0)t =⇒

Z̃(0) = V tZ(0) =
1√
2

(
1 1
−1 1

)(
1
2

)
=

1√
2

(
3
1

)
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Z̃ ′(0) = V tZ ′(0) = (0, 0)t

substituting these initial values into the general solution ⇝

c1,1 = 3/
√
2, c2,1 = 1/

√
2, c1,2 = c2,2 = 0 ,

i.e.
Z̃(t) =

1√
2

(
3 cos t

cos(
√
5 t)

)
undoing the transformation Z = V Z̃ ⇝(

x(t)
y(t)

)
=

1√
2

(
1 −1
1 1

)
︸ ︷︷ ︸

V

Z̃(t) =
1

2

(
3 cos t− cos(

√
5 t)

3 cos t+ cos(
√
5 t)

)

aperiodic solution in view of the irrational ratio (1/(2π)) : (
√
5/(2π)) of the

frequencies of the summands cos t and cos(
√
5 t)
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5.7 Predator-Prey Model

Determine the critical points of the system of differential equations

u′ = u(1− 2u+ 2v)

v′ = v(1− u)

as well as their type and sketch the vector field of tangent directions.

Resources: Stability of Autonomous Systems of Differential Equations,
Stability of Linear Systems of Differential Equations
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Solution

Critical points

solving (
0
0

)
!
=

(
u′

v′

)
=

(
u(1− 2u+ 2v)

v(1− u)

)
︸ ︷︷ ︸

F (u,v)

⇝ critical points p1 = (0, 0), p2 = (1/2, 0), p3 = (1, 1/2)

Stability and type

classification with the determinant and trace of the Jacobi matrix

F ′ =

(
1− 4u+ 2v 2u

−v 1− u

)

• F ′(p1) =

(
1 0
0 1

)
double eigenvalue λ = 1 > 0, diagonal matrix =⇒ unstable knot

• F ′(p2) =

(
−1 1
0 1/2

)
detF ′(p2) = −1 < 0 =⇒ saddle (unstable)

• F ′(p3) =

(
−2 2
−1/2 0

)
detF ′(p3) = 1 > 0, traceF ′(p3) = −2 < 0 =⇒ stable
knot since det ≤ (trace /2)2 (degenerate since 1 is a double eigenvalue
and F ′ is not diagonalizable)

Vector field of tangent directions

Matlab® -script

[u,v] = meshgrid([0.1:0.1:1.4],[0.1:0.1:0.9]);
F1 = @(u,v) u.*(1+2*v-2*u);
F2 = @(u,v) v.*(1-u);

% direction field
quiver(u,v,F1(u,v),F2(u,v));

% critical points
plot([0;1/2;1],[0;0;1/2],’.k’,’MarkerSize’,30);
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% solution curve
% specifying the differential equation in Matlab syntax
F = @(t,uv) [F1(uv(1),uv(2)); F2(uv(1),uv(2))];
% solution starting from (0.1,0.4)
[T,UV] = ode45(F,[0 100],[0.1; 0.4]);
plot(UV(:,1),UV(:,2),’-r’,’LineWidth’,3)

% labels and lines u’=0, v’=0
...

axis equal

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1
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5.8 Animation of Incompressible Flow Around
a Circular Island with MapleTM

Visualize the motion of a boat around a circular island with radius R = 1
for several starting positions. Use the approximation

V (x, y) = gradU(x, y), U(x, y) =

(
1 +

R2

x2 + y2

)
x

for the velocity field V , assuming that the width of the river is large compared
to R.

Resources: Systems of Differential Equations with MapleTM , System of
Differential Equations
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Solution

Computation of the boat trajectories

with(DEtools): with(plots): with(plottools):
# differential equations for the path x(t),y(t) of the boat
R := 1; U := (1+R^2/(x^2+y^2))*x
Vx := diff(U,x); Vy := diff(U,y)
DEx := diff(x(t),t) = subs(x=x(t),y=y(t),Vx)
DEy := diff(y(t),t) = subs(x=x(t),y=y(t),Vy)
# initial positions
S := {[x(0)=-2,y(0)=-1],[x(0)=-2,y(0)=1/2],[x(0)=-2,y(0)=3/2]}
# time interval and image window
T := t=0..5; X := x=-2..2; Y := y=-2..2
# plotting the island, the velocity field,
# and the boat trajectories
A := disk([0,0],R,color=green)
B := DEplot({DEx,DEy},{x(t),y(t)},T,X,Y,S, ...

... color=blue,linecolor=black,animatecurves=true)
display(A,B)

Animation of the flow

By clicking on the image
and choosing the options
animation and play in the
opening menu, the boat
trajectories are successively
displayed according to the
velocity. The image on the left
shows the last frame of this
video sequencea.

aThe velocity field inside the is-
land cannot be suppressed in an el-
egant fashion.
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5.9 Limit Cycle of the Van der Pol Equation
with Matlab®

After a few initial oscillations, the solution u of the differential equation
(model of a nonlinear oscillator)

u′′ + (u2 − 1)u′ + u = 0

becomes periodic.

0 5 10 15 20

-2

0

2

Determine the period T and initial values u0, u′
0 for this limit cycle.

Resources: Differential Equations with Matlab® , System of Differ-
ential Equations, Differentiation with Respect to Initial Conditions
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Solution

Periodicity condition

With the choice u0 = 0, one has to solve a nonlinear system for the unknown
derivative a = u′

0 and the period T :

P (a, T )− (0, a)t = (0, 0)t . (1)

In these equations, P denotes a function which computes (u(T ), u′(T ))t for
the initial values (u(0), u′(0))t = (0, a)t.

Solution of the differential equation

Transforming the second order differential equation u′′ = (1 − u2)u′ − u to
standard form (system of differential equations of first order) by introducing
the variables U = (u, u′)t,

U ′ = vdP(U) =

(
U2

(1− U2
1 )U2 − U1

)
,

leads to the following Matlab® -implementation.

function UT = P(aT)
a = aT(1); T = aT(2); % initial slope and period
% solution of the system if differential equations
% on the interval [0,T] with the initial values [0;a]
vdP = @(t,U) [U(2); (1-U(1)^2)*U(2)-U(1)];
[t,Ut] = ode45(vdP,[0;T],[0;a]);
% Ut(k,1) = U_1(t(k)), Ut(k,2) = U_2(t(k))
UT = Ut(end,:)’; % value and derivative at time T
end

Solving the equations for periodicity

numerically minimizing the norm of the error

graphical determination of start values
a = 2 % slope of u at the zero near t = 13
T = 7 % time difference to the next zero near t = 20
aT = [a;T];
% solving equation (1) by minimizing the norm of the error
err = @(aT) norm(P(aT)-[0;aT(1)])
aT = fminsearch(err,aT)
% -> slope aT(1) and period aT(2)

2.1733 6.6655
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Plot of the limit cycle in the phase plane

u′ = U2 as a function of u = U1

[t,Ut] = ode45(@vdP,[0;aT(2)],[0; aT(1)]);
plot(Ut(:,1),Ut(:,2))

-2 0 2

-2

-1

0

1

2

Alternative solution

It would be more elegant to solve the nonlinear system (1) with Newton’s
method. However, the implementation is substantially more difficult, since
one has to solve additional systems of differential equations for the Jacobi
matrices.
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5.10 Goal of the Month with Matlab®

At what angle φ does a soccer ball
have to be shot from the penalty point
with an initial velocity of 80 km/h in
order to hit the goal in the upper left
corner, just next to the post and un-
derneath the crossbar?

In a simplified model5, the trajectory x(t) of a soccer ball during a penalty
kick can be described by the differential equation

x′′ = −
(

0
g

)
− γ
√

(x′
1)

2 + (x′
2)

2 x′, x(0) =

(
0
r

)
, x′(0) = v

(
cosφ
sinφ

)
,

where x1 is the horizontal distance of the center of the ball from the penalty
point (located eleven meters in front of the goal), and x2 is the vertical
coordinate of the ball position. The constant g ≈ 9.81 denotes the gravity
of the earth, and γ ≈ 0.0118 is a proportionality factor for air resistance.
Finally, r ≈ 0.11 is the radius of the soccer ball, and v = 80 · 1000/602 its
initial velocity (units: meters [m] and seconds [s]).

Resources: Differential Equations with Matlab® , System of Differential
Equations

5T. Wilhelm, F. Zimmermann: Die Luft beim Fußballflug, Praxis der Naturwis-
senschaften - Physik in der Schule 63, Nr. 1, 2014, S. 28-37
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Solution

Nonlinear system for the angle and the flight time

Solving the differential equation numerically yields the final ball position
x(T ) as a function f of the parameters p = (φ, T )t (angle and flight time).
The angle φ is then obtained by solving the non-
linear system

x(T ) = f(p)
!
=

(
e1
e2

)
=( √

112 + (7.32/2− 0.11)2

2.44− 0.11

)
≈
(

11.56
2.33

)
,

with e the position of the center of the ball in the
upper left corner of the goal with respect to the
penalty point (horizontal distance: x1(T ), height:
2.44− r).

Standard form of the differential equation for the numerical solution

u = (x1, x2, x
′
1, x

′
2) with additional variables u3, u4 for the velocity x′ ⇝

first order system of differential equations
u′
1

u′
2

u′
3

u′
4

 =


u3

u4

−γ
√

u2
3 + u2

4 u3

−g − γ
√

u2
3 + u2

4 u4



Matlab® -function f , describing the nonlinear system

function e = f(p)
% p: angle phi and flight time T
% e: final ball position

% parameters
gamma = 0.0118; g = 9.81; r = 0.11;
v = 80000/3600; % conversion km/h -> m/s
phi = p(1); T = p(2);

% right-hand side of the differential equation
u_prime = @(t,u) [u(3); u(4); ...

-gamma*norm(u(3:4))*u(3); -g-gamma*norm(u(3:4))*u(4)];
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% initial values
u_0 = [0; r; v*cos(phi); v*sin(phi)];

% numerical solution
[t,u] = ode45(u_prime,[0,T],u_0);
e = u(end,1:2)’; % final ball position
end

Solution of the nonlinear system

initial approximation ps = (φs, Ts)
t based on a straight shot, ignoring gravi-

tation and air resistance:
difference d = e− (0, r)t ≈ (11.56, 2.22)t of target position and penalty point
⇝

φs = arctan(d2/d1) ≈ 0.180, Ts = |d|/v = 0.530

solution of f(p) = e by minimizing the least squares error ∆e = |f(p) − e|2
⇝ Matlab® script

% initial approximation
r = 0.11; v = 80000/3600;
e = [sqrt(11^2+(7.32/2-r)^2); 2.44-r]; d = e-[0;r];
phi_s = atan(d(2)/d(1)), T_s = norm(d)/v,

% minimization of the least squares error
delta_e = @(p) norm(f(p)-e)^2;
p = fminsearch(delta_e,[phi_s;T_s]);
phi = p(1), T = p(2)

phi = 0.3209, T = 0.5885

The angle φ is almost twice as large as the angle φs of a straight line from
the penalty point to the corner of the goal.
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5.11 Three Body Problem with Matlab®

The trajectories t 7→ Pk(t) ∈ R3, k = 1, 2, 3, of three planets subject to their
gravitational forces satisfy the differential equations

P ′′
k =

∑
j ̸=k

mj
Pj − Pk

|Pj − Pk|3
,

if the masses mj are normalized appropriately. Solve this system numerically
for 0 ≤ t ≤ 4, m = (10, 10, 1), and the two (almost identical) initial values

P1(0) P2(0) P3(0) P ′
1(0) P ′

2(0) P ′
3(0)

(1, 0, 0) (−1, 0, 0) (0, 0, 0) (0, 1, 0) (0,−1, 0) (0, 0, 1)
(1, 0, 0) (−1, 0, 0) (0.1, 0, 0) (0, 1, 0) (0,−1, 0) (0, 0, 1)

.

Plot the trajectories in both cases.

Resources: Differential Equations with Matlab® , System of Differ-
ential Equations
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Solution

Transformation to standard form

conversion of the second order differential equations to a first order system
for the vector

u := (P1, P2, P3, P
′
1, P

′
2, P

′
3) ∈ R18 ,

i.e. (u1, u2, u3) = P1, (u4, u5, u6) = P2, . . ., and (u10, u11, u12) = P ′
1, . . .

• coupling of position Pk and velocity P ′
k ⇝

(u1, u2, u3)
′ = (u10, u11, u12), (u4, u5, u6)

′ = (u13, u14, u15), . . . (1)

• equations P ′′
1 = (P ′

1)
′ ⇝

(u10, u11, u12)
′ = m1

(u4, u5, u6)− (u1, u2, u3)

|(u4, u5, u6)− (u1, u2, u3)|3︸ ︷︷ ︸
=:d2,1/n3

2,1

+m3 d3,1/n
3
3,1 , (2)

with analogous differential equations for (u13, u14, u15)
′ and (u16, u17, u18)

′

combining (1) and (2) ⇝ first order system

(u1, . . . , u18)
′ = (f1(u), . . . , f18(u))

Matlab® function f

function Du = f(t,u)
% f(u)->f(t,u) since the Matlab solver requires a t-dependence
m = [10; 10; 1];
% djk = P_j-P_k and njk = |P_j-P_k|
d21 = u(4:6)-u(1:3); n21 = norm(d21);
d31 = u(7:9)-u(1:3); n31 = norm(d31);
d32 = u(7:9)-u(4:6); n32 = norm(d32);

% derivatives
Du = [u(10:18); ...

m(2)*d21/n21^3+m(3)*d31/n31^3; ...
-m(1)*d21/n21^3+m(3)*d32/n32^3; ...
-m(1)*d31/n31^3-m(2)*d32/n32^3];
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Numerical solution and plot of the trajectories

% first initial values
u0 = [1,0,0, -1,0,0, 0,0,0, 0,1,0, 0,-1,0, 0,0,1];
% numerical solution of the system of differential equations
% output: u(k,1:18) = solution at time t(k)
[t,u] = ode45(@f_3body,[0,4],u0);
% plot of the three trajectories (blue, green, red)
subplot(1,2,1) % left image
plot3(u(:,1),u(:,2),u(:,3),’-b’,u(:,4),u(:,5),u(:,6),’-g’, ...

u(:,7),u(:,8),u(:,9),’-r’);
% second initial values
u0 = [1,0,0, -1,0,0, 0.1,0,0, 0,1,0, 0,-1,0, 0,0,1];

...
subplot(1,2,2) % right image

...

small perturbation with dramatic effect: periodic up and down motion of the
small planet → chaotic orbit!
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5.12 Return to Earth with Matlab®

The position p(t) and velocity v(t) (|v| > 0) of a space ship can be modeled
by the differential equations

p′ = v, v′ = −Gp/|p|3 − Av/|v| ,

with G = 3.9860 · 1014, the product of the gravitational constant and the
mass of the earth, and −A the negative acceleration (units: meters [m] and
seconds [s]).

Write a Matlab® function space_shuttle(R) which simulates a flight
back to the earth, starting from a circular orbit with radius R ≫ r = 6.378 ·
106 (radius of the earth). The interactive program should permit to gradually
increase or reduce A by clicking the left and right arrow keys (A = nAAmin,
nA ∈ N0).

Resources: Differential Equations with Matlab® , System of Differ-
ential Equations
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Solution

Program description

The function space_shuttle(R) first defines the relevant constants and pa-
rameters. Then, a graphic window is initialized, the earth is plotted, and
a function key_action for reacting on clicks of the arrow keys is activated.
The subsequent while-loop iterates time-steps, t → t + ∆t, of Euler’s ap-
proximation6, i.e.

p(t+∆t) = p(t) + ∆t v(t),

v(t+∆t) = v(t) + ∆t (−Gp(t)/|p(t)|3 − Av(t)/|v(t)|) ,

and draws the segment of the flight trajectory for the interval [t, t + ∆t].
Changes of the acceleration −A by invoking key_action (A = nAAmin, nA →
nA ± 1), are accessible to every program segment by storing nA as a global
variable.

Matlab® implementation

function space_shuttle(R)
% R: radius of the initial circular orbit, e.g. 2 x 10^7
global n_A

% constants (units [m,s]) and parameters
G = 3.9860e14; % gravitational constant * mass of the earth
r = 6.378e6; g = G/(r^2); % radius of the earth, gravity
Amin = g/20; n_A = 0; % acceleration increment and factor
dt = 2*pi*sqrt(R^3/G)/2000; % time-step: orbital period/2000
dt_s = dt/200; % scaling of the image (time-lapse)
p = [R; 0]; % start position
v = [0; sqrt(G/R)]; % initial velocity

% initialization of the image, plotting of the earth
figure; axis equal; hold on
fill(r*cos(linspace(0,2*pi)),r*sin(linspace(0,2*pi)),’b’)

% initializing the function for reacting on clicks of arrow keys
set(gcf,’KeyPressFcn’,@key_action)

while norm(p) > r % not yet landed

6chosen, to keep the program as simple as possible
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% time step
p_new = p + dt*v;
v = v+dt*(-G*p/norm(p)^3-n_A*Amin*v/(10*eps+norm(v)));
% Adding 10*eps avoids a division by 0.

% plotting a segment of the flight path
plot([p(1) p_new(1)],[p(2) p_new(2)],’r’);
p = p_new;

% current velocity and acceleration
vt = num2str(round(norm(v))); At = num2str(n_A*Amin/g);
xlabel([’|v|: ’ vt ’, A: ’ At ’g’])
pause(dt_s)

end

function key_action(h,evt)
% h: graphics handle
% evt: structure with the field .Key for a clicked arrow key
global n_A

switch evt.Key
case ’leftarrow’; % increasing acceleration

n_A = n_A+1;
case ’rightarrow’; % reducing acceleration

n_A = max(n_A-1,0);
end

Example of a simulation

In the flight simulation, shown in the figure, the space ship first stays for
25000 seconds in the initial circular orbit (nA = 0, no arrow keys are clicked).
Then it slows down. For a smooth landing (acceptable final velocity) the neg-
ative acceleration has to be adapted to the increasing gravity of the earth.
Manually, this is very difficult. The depicted landing approach with the rela-
tively low final velocity v = 2m/s is the result of an autopilot7, an additional
program segment which updates the acceleration automatically.

7You should also program an automatic control of the acceleration, if you are not
satisfied with your attempts to land manually (as were the authors!).
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Acceleration history

The following bar graph shows the acceleration A, measured in terms of
multiples of the gravity g, as a function of the flight time t, and documents
the exact acceleration history.
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Chapter 6

Lexicon

165



6.1 First Order Differential Equations

First Order Differential Equation

y′(x) = f(x, y(x)), y(x0) = y0︸ ︷︷ ︸
initial condition

unique solution on an interval
(x0−δ, x0+δ) for continuously
differentiable f

Geometric interpretation:
prescribed slopes/tangents of
the solutions at each point
(x, y)

Differential Equation for the Exponential Function

y′ = py + q, p, q ∈ R, p ̸= 0

general solution: y(x) = c epx − q/p
initial value y(x0) = y0 ⇝ integration constant c = (y0 + q/p) e−px0 and

y(x) = (y0 + q/p) ep(x−x0) − q/p

p < 0 =⇒ limx→∞ y(x) = −q/p for any initial value

First Order Linear Differential Equation

y′(x) = p(x)y(x) + f(x)

general solution: y = yh + yp with

yh(x) = c exp(P (x)), P (x) =

∫
p(x) dx

the general solution of the homogeneous differential equation y′ = py and

yp(x) =

∫ x

x0

exp(P (x)− P (ξ))f(ξ) dξ
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a particular solution, which can be constructed with the ansatz yp(x) =
C(x) exp(P (x)) (variation of constants)
initial value y(x0) = y0 =⇒ c = y0 exp(−P (x0))

Special case: constant coefficient p

y(x) = y0 exp(p(x− x0)) +

∫ x

x0

exp(p(x− ξ))f(ξ) dξ

Method of Undetermined Coefficients

particular solutions yp of the differential equation

y′(x)− py(x) = f(x), p ̸= 0 ,

for special right-hand sides f

f(x) yp(x)
n∑

k=0

akx
k

n∑
k=0

bkx
k

a eλx, λ ̸= p
a

λ− p
eλx

a epx (resonance) ax epx

a cos(ωx) + b sin(ωx) ã cos(ωx) + b̃ sin(ωx)

general solution: y(x) = yp(x) + c epx

Separable Differential Equation

g(y(x))y′(x) = f(x)

indefinite integrals of f and g ⇝ implicit form of the general solution

G(y(x)) = F (x) + c, F ′ = f, G′ = g

initial value y0 = y(x0) ⇝ integration constant c = G(y0)− F (x0)

Bernoulli Differential Equation

y′ + py = qyk, k ̸= 0, 1
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substitution z = y1−k ⇝ linear differential equation

z′ = p(k − 1)z + (1− k)q

Special case: p, q constant

y(x) =

(
q

p
+ c exp(p(k − 1)x)

) 1
1−k

Linear Substitution

y′ = f(a+ bx+ cy)
z=a+bx+cy−→ z′

b+ cf(z)
= 1 (separable)

Differential Equation with Homogeneous Right-hand Side

y′(x) = f(y(x)/x)

substitution xz(x) = y(x) ⇝ separable differential equation

xz′(x) = f(z(x))− z(x) ⇐⇒ z′

f(z)− z
= x

Exact Differential Equation

p(x, y) + q(x, y)y′ = 0 ⇐⇒ p dx+ q dy = 0, p = ∂xF, q = ∂yF

⇝ implicit solution F (x, y) = c
necessary condition for integrability (existence of F with gradF = (p, q)t):
∂yp = ∂xq
sufficient on a simply connected domain
Construction of F : Integrating Fx(x, y) = p(x, y) with respect to x yields
F (x, y) = P (x, y) + c(y), and c is obtained by integrating c′(y) = q(x, y) −
Py(x, y) with respect to y.

Integrating Factor

p dx+ q dy = 0
multiply with an integrating factor a−→ (ap) dx+ (aq) dy = 0︸ ︷︷ ︸

exact differential equation

,
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i.e. a is chosen so that ∂y(ap) = ∂x(aq)

Discretization Error

error ∆ of a numerical scheme

ỹ(x+ h) = ỹ(x) + hf̃(x, ỹ(x), ỹ(x+ h))

for approximating a differential equation y′(x) = f(x, y(x)):

∆(x, h) = y(x+ h)− y(x)− hf̃(x, y(x), y(x+ h)) ,

i.e. ∆ is the discrepancy, when substituting an exact solution y of the differ-
ential equation into the difference approximation

Differential Equations with MapleTM

with (DEtools) # load the differential equations package

# analytic solution
dsolve(de) # general solution of the differential equation de
dsolve({de,c}) # impose the initial/boundary conditions c
# example: y’’+y’=y+x, y(0)=0, y’(1)=1
de := diff(y(x),x,x)+diff(y(x),x)=y(x)+x
c := y(0)=0,D(y)(1)=1

# numerical solution
sol := dsolve({de,c},numeric)
# -> procedure for evaluating the solution
# example: y’ = cos(x*y), y(0)=0
sol := dsolve({diff(y(x),x)=cos(x*y(x)), y(0)=0},numeric)
sol(1) # -> value at x=1
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6.2 Second Order Differential Equations

Linear Oscillator

u′′(t) + ω2
0u(t) = c cos(ωt), ω0 > 0

superposition of free and forced oscillations: u = uh + up with

uh(t) = a cos(ω0t) + b sin(ω0t)

up(t) =


c

ω2 − ω2
0

(cos(ω0t)− cos(ωt)), ω ̸= ω0

c

2ω
t sin(ωt), ω = ω0 (resonance)

initial conditions =⇒ a = u(0), b = u′(0)/ω0

Homogeneous Second Order Differential Equation with Constant Coefficients

u′′(t) + pu′(t) + qu(t) = 0

type of solution determined by the zeros of the characteristic polynomial
λ2 + pλ+ q

• two real zeros λ1 ̸= λ2: u(t) = aeλ1t + beλ2t

• a double zero λ: u(t) = (a+ bt)eλt

• two complex conjugate zeros −p/2 ± ϱi: u(t) = e−pt/2(a cos(ϱt) +
b sin(ϱt))

initial conditions u(0) = u0, u′(0) = u′
0 ⇝ linear system for the constants

a and b

Method of Undetermined Coefficients

particular solutions up for the differential equation

u′′(t) + pu′(t) + qu(t) = f(t)

• polynomials f(t) =
∑n

k=0 akt
k ⇝ up(t) =

∑n
k=0 bkt

k, if q ̸= 0
multiplication of

∑n
k=0 . . . with t (t2), if q = 0 (q = p = 0)
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• exponential functions f(t) = eλt ⇝ up(t) = c eλt, if λ2+pλ+ q ̸= 0
multiplication of c eλt with t (t2), if λ is a simple (double) root of the
characteristic polynomial (u = f solves the homogeneous differential
equation u′′ + pu′ + qu = 0 in this case)

• trigonometric functions f(t) = eαt(a sin(ωt)+b cos(ωt)) ⇝ up(t) =
eαt(ã sin(ωt) + b̃ cos(ωt))
multiplication of eαt(. . .) with t, if α ± iω are the zeros of the charac-
teristic polynomial

superposition of particular solutions up for a sum f of different terms

Euler’s Differential Equation

t2u′′(t) + pu′(t) + qu(t) = 0, t > 0

ansatz u(t) = tλ ⇝ λ(λ− 1) + pλ+ q = 0
general solution

• two real exponents λ1, λ2: u(t) = c1t
λ1 + c2t

λ2

• a single real exponent λ: u(t) = tλ(c1 + c2 ln t)

• complex conjugate exponents r±si: u(t) = tr(c1 cos(s ln t)+c2 sin(s ln t))

Alternative: substituting t = eτ , u(t) = v(τ) ⇝

v′′ + (p− 1)v′ + qv = 0

Forced Damped Oscillations

u′′(t) + 2ru′(t) + ω2
0u(t) = c cos(ωt), r > 0

qualitative behavior determined by the solutions uh of the homogeneous dif-
ferential equation (c = 0)

• strong damping (r > ω0): uh = aeλ1t + beλ2t, λ1,2 = −r ±
√

r2 − ω2
0

• critical damping (r = ω0): uh = (a+ bt)e−rt
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• weak damping (r < ω0): uh = e−rt(a cos(λt)+b sin(λt)), λ =
√

ω2
0 − r2

particular solution (periodic)

up(t) = C cos(ωt+ δ)

with amplitude C = c/
√

(ω2
0 − ω2)2 + (2rω)2 and phase δ = arg(ω2

0 − ω2 −
i2rω)
general solution: u = up + uh

Resonance frequency: maximizes C

ω⋆ =
√
ω2
0 − 2r2 for r < ω0/

√
2

Phase Plane

autonomous differential equation

u′′ = f(u, u′)

• unique solution curves t 7→ (u(t), u′(t)) for
any initial point (u0, u

′
0)

• critical points: constant solutions u(t) ≡ u0,
reached as limits only

• curve intersection only at critical points

differential equation for v(u) = u′(t): u′′(t) = du′(t)/dt = (du′(t)/du)(du/dt)
⇝

dv
du

v = f(u, v)

Conservation of Energy

one-dimensional motion t 7→ u(t) with velocity v = u′, governed by a poten-
tial P

u′′ + P ′(u) = 0

constant sum of kinetic and potential energy

E(u, v) =
1

2
v2 + P (u), v = u′

⇝ implicit representation of solution curves in the phase plane
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6.3 Systems of Differential Equations

System of Differential Equations

standard form:

u′(t) = f(t, u(t)), u(t0) = a, u = (u1, . . . , un)
t, f : R× Rn → Rn

transformation to first order using additional variables for higher derivatives,
e.g. u1 = y, u2 = y′, u3 = y′′, etc.

• existence of a solution in a neighborhood of t0 for continuous f (The-
orem of Peano)

• uniqueness for Lipschitz continuous f (Picard-Iteration), i.e. if

|f(t, u)− f(t, ũ)| ≤ L|u− ũ|

Differentiation with Respect to Initial Conditions

differentiating the initial value problem

u′(t) = f(t, u(t)), u(t0) = (a1, . . . , an)
t (1)

with respect to a ⇝

u′
a(t) = fu(t, u(t))ua(t), ua(t0) = E , (2)

with the Jacobi matrix ua = (∂u/∂a1, . . . , ∂u/∂an), the Jacobi matrix fu of
f with respect to the second argument, and the (n× n) unit matrix E
(1),(2): coupled system of n+ n2 differential equations for u and ua

Linear System of Differential Equations

u′(t) = A(t)︸︷︷︸
n×n

u(t) + b(t)

general solution: u(t) = up(t) + Γ(t)c with a particular solution up and
a fundamental matrix Γ, the rows of which contain n linearly independent
solutions of the homogeneous system u′ = Au
initial condition u(t0) = a ⇝ c = Γ(t0)

−1(u(t0)− up(t0))
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Wronski Determinant

determinant of a fundamental matrix Γ of a linear system of differential equa-
tions
Γ′ = AΓ =⇒ (det Γ)′ = traceA (det Γ), i.e.

det Γ(t) = det Γ(t0) exp

 t∫
t0

traceA(s) ds



Variation of Constants

solving a linear system of differential equations,

u′(t) = A(t)u(t) + b(t) ,

using the ansatz u(t) = Γ(t)c(t) with a fundamental matrix Γ (Γ′ = AΓ) ⇝

u(t) = uh(t) + up(t) = Γ(t)

Γ(t0)
−1u(t0) +

t∫
t0

Γ(s)−1b(s) ds



Diagonalization of a Linear System of Differential Equations

eigensolutions:

Av = λv, u(t) = eλt v =⇒ u′(t) = Au(t)

The existence of a basis of eigenvectors vk permits the diagonalization of A,

Q−1AQ = diag(λ1, . . . , λn), Q = (v1, . . . , vn) ,

and a decoupling of the inhomogeneous system of differential equations u′(t) =
Au(t) + b(t):

d′k(t) = λkdk(t) + ck(t), u(t) = Qd(t), c = Q−1b

with the solution

dk(t) = eλkt
(
e−λkt0dk(t0) +

t∫
t0

e−λks ck(s) ds
)
.
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Special case: general solution of the homogeneous system u′ = Au

u(t) =
∑
k

γkvke−λkt

with the coefficients γk determined by an initial condition

Jordan Form of a System of Linear Differential Equations

applying the transformations

J = Q−1AQ, u(t) = Qv(t), c(t) = Q−1b(t)

to u′(t) = Au(t) + b(t) ⇝

v′n(t) = λnvn(t) + cn(t)
v′n−1(t) = λn−1vn−1(t) + ϱnvn(t) + cn−1(t)

...
v′1(t) = λ1v1(t) + ϱ2v2(t) + c1(t)

with λk the eigenvalues of A (diagonal elements of J) and ϱk ∈ {0, 1}
bidiagonal form of the system of differential equations ⇝ successive de-
termination of vk starting with the n-th component

Elimination for a Linear System of Differential Equations

elimination of u(t) from the system of differential equations

Eu : u′ + au = f(t, v)
Ev : v′ + bu = g(t, v)

by forming the difference D : bEu −
( d

dt + a
)
Ev ⇝ second order differ-

ential equation for v(t):

D : −v′′(t)− av′(t) = bf(t, v(t))− d
dt
g(t, v(t))− ag(t, v(t))

Equivalent alternative: For b ̸= 0, solve Ev for u(t) and substitute into
Eu.

For a system of n first order differential equations u′ = Au + f a repetition
of this procedure yields an n-th order differential equation for one of the
components uk. Substituting its solution, the dimension of the system can
be reduced.
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Stability of Linear Systems of Differential Equations

stability of u′(t) = Au(t), characterized in terms of the eigenvalues λk of the
matrix A

• stable, i.e. limt→∞ |u(t)| = 0 for all initial values u(0)
⇐⇒ Reλk < 01

• neutrally stable, i.e. u(t) ≤ c, and there exist initial values for which
|u(t)| ̸→ 0
⇐⇒ Reλk ≤ 0, ∃λℓ with Reλℓ = 0 and Reλℓ = 0 =⇒ equal
geometric and algebraic multiplicity

• unstable, i.e. limt→∞ |u(t)| = ∞ for some initial value u(0)
⇐⇒ ∃λℓ with Reλℓ > 0 or with Reλℓ = 0 and smaller geometric
than algebraic multiplicity

Special case of two-dimensional systems: A : 2× 2
stability ⇐⇒ detA > 0 ∧ traceA < 0
stable knot (stable spiral): detA ≤ ((traceA)/2)2 (. . . > . . .)
The figures show typical examples of qualitatively different nondegenerate
cases (no eigenvalue equal to zero), which can be classified with the Jordan
form of A,

J =

(
λ s
0 ϱ

)
, s ∈ {0, 1}

1the simplest and most important condition
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Stability of Autonomous Systems of Differential Equations

stability of u′ = f(u) for a critical point u⋆ (f(u⋆) = (0, . . . , 0)t), character-
ized in terms of the linearization

v′ = f ′(u⋆)v, v(t) = u(t)− u⋆

stability of u⋆, i.e. limt→∞ u(t) = u⋆ for all initial values in a neighborhood
of u⋆ ⇐⇒ Reλ < 0 for all eigenvalues λ of the Jacobi matrix f ′(u⋆)
classification (stable knot or spiral) analogous to the approximating linear
system

Differential Equations with Matlab®

[T,U] = ode45(f,[t0,tend],u0)

% solves u’(t) = f(t,u(t)), u(t0) = u0 on the interval [t0,tend]
% f = @(t,u) ... function handle
% scalar or column vector, depending on the dimension of u
% T: times where the solution u is evaluated
% U(k,:): solution at T(k)

% example: u1’ = u2, u2’=t+u1, u(0) = (1,2)
f = @(t,u) [u(2); t+u(1)], u0 = [1;2]

alternative solvers: ode23, ode113, . . .

Systems of Differential Equations with MapleTM

with (DEtools) # load the differential equations package

# analytical solution
dsolve({de_x,de_y}) % solves a two dimensional system
dsolve({de_x,de_y,ic_x,ic_y}) # imposes initial conditions

# numerical solution, returns an evaluation procedure
sol := dsolve({de_x,de_y,ic_x,ic_y},numeric)
sol(t) # -> [t,x(t),y(t)]

# plot the solution curves for several initial conditions
DEplot({de_x,de_y},{x(t),y(t)},trange,{[ic_x,ic_y], ...})
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# sample data
de_x := diff(x(t),t) = t*y(t); de_y := diff(y(t),t) = -t*x(t)
ic_x := x(0) = 1; ic_y := y(0) = 0
trange := t=0..2
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6.4 Laplace Transform

Laplace Transform

L : u 7→ U = Lu

U(s) =

∞∫
0

u(t)e−st dt, Re s ≥ a, u(t) =
1

2πi

b+i∞∫
b−i∞

U(s)est ds, b ≥ a

if |u(t)e−at| is integrable on [0,∞)

Laplace Transform of Exponential Functions

u(t) = tneat L−→ U(s) =
n!

(s− a)n+1
, Re s > Re a

a = λ± iω, formula of Euler-Moivre ⇝

eλt cos(ωt) −→ s− λ

(s− λ)2 + ω2
, eλt sin(ωt) −→ ω

(s− λ)2 + ω2

Translation and Scaling of Laplace Transforms

• u(t− a)
L−→ e−asU(s), a > 0 and u(t) = 0 for t ≤ 0

• eatu(t) L−→ U(s− a)

• u(at)
L−→ a−1U(s/a), a > 0

Laplace Transform of Periodic Functions

u(t) = u(t+ T ) =⇒ U(s) =

∫ T

0
e−stu(t) dt
1− e−Ts
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Differentiation and Integration of Laplace Transforms

u(n)(t)
L−→ snU(s)− sn−1u(0)− sn−2u′(0)− · · · − u(n−1)(0)

tnu(t)
L−→ (−1)nU (n)(s)

v(t) =
t∫
0

u(r) dr L−→ V (s) = U(s)/s

Convolution and Laplace Transforms

(u ⋆ v)(t) =

t∫
0

v(t− r)u(r) dr L−→ U(s)V (s)

Laplace Transform of Linear First Order Differential Equations

u′(t) + pu(t) = f(t), u(0) = a
L−→ U(s) =

1

s+ p
(F (s) + a)

Φ(s) = (s+ p)−1 L−1

−→ φ(t) = e−pt =⇒ u = uh + up = aφ+ φ ⋆ f

Laplace Transform of Linear Second Order Differential Equations

u′′(t) + pu′(t) + qu(t) = f(t), u(0) = a, u′(0) = b

L−→ U(s) =
1

s2 + ps+ q
(F (s) + as+ ap+ b)

⇝ representation of the solution as convolution:

u = aφ′ + (ap+ b)φ︸ ︷︷ ︸
uh

+φ ⋆ f︸ ︷︷ ︸
up

, φ(t) =


eλt − eϱt

λ− ϱ
, λ ̸= ϱ

teλt , λ = ϱ

with λ, ϱ the zeros of the characteristic polynomial Φ−1(s) = s2 + ps+ q and
φ the inverse Laplace transform of Φ
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